Belilios Public School PHYSICS Mock Examination, 2022-2023 Marking Scheme

PHYSICS PAPER 1

Section A

- 1. D
- 2. A
- 3. B
- 4. C
- 5. B
- 6. B
- 7. D
- 8. C
- 9. D
- 10. A
- 11. A
- 12. A 13. C
- 14. A
- 15. D
- 16. B
- 17. B
- 18. A
- 19. C
- 20. D
- 21. C
- 22. D
- 23. D 24. B
- 25. B
- 26. C
- 27. A
- 28. C
- 29. B
- 30. C
- 31. B
- 32. A
- 33. D

Section B

1. (a)energy absorbed by octadecan-1-ol = energy released by w	ater 1M
$0.1 \times l + 0.1 \times 2610 \times (59.5 - 25) = 1 \times 4200 \times (90 - 78)$	1M
$l = 414000 \text{ J K}^{-1}$	1A

(b)Some energy i	s absorbed by th	ne test tube.	1A

(c)The layer can reduce heat loss of water by prevent evaporation.1A

(d)Stir the water / wrap the beaker with cotton. 1A

2. (a) $n \propto V$ 1M 217

$$n_B = 0.8 \times \frac{3V}{5V} = 0.48 \text{ mol}$$

)606 K / 333 °C 1A

(c)(i)
$$n_A + n_B = n_A' + n_B'$$

 $\frac{2p \times 5V}{606} + \frac{p \times 3V}{303} = p_f \left(\frac{5V}{606} + \frac{3V}{303}\right)$ 1M

$$p_f = 1.45 p \left(\frac{1}{11} p\right)$$
(ii)As gas flows from *A* to *B*,

the number of molecules increases 1A So the molecules collides with the inner wall of the vessel more frequently. 1A Hence, the pressure in *B* increases.

3. (a)(i) By
$$v^2 = u^2 + 2as$$
 1M
 $10^2 = 0^2 + 2a(50)$

$$a = 1 \text{ m s}^{-2}$$
 1A

(ii)
$$mg \sin \theta - f = ma$$

 $f = 1.5(9.81) \sin 10^{\circ} - 1.5(1)$
 $f = 1.06 \text{ N}$
1A (1.10 N)

(b)(i)
$$v_y = u_y + at$$

 $v_y = 10 \sin 10^\circ + 9.81 \times 3.5 = 36.1 \text{ m s}^{-1}$
 $v = \sqrt{36.1^2 + (10 \cos 10^\circ)^2}$
 $v = 37.4 \text{ m s}^{-1}$
1M
1M
1M
for either
component
1A

$$\tan \theta = \frac{v_y}{v_x}$$
(ii) $\frac{v_x}{v_x}$
 $\theta = 74.7^{\circ}$ 1A

(c)gain in K.E. = lost in PE 1M

$$\frac{1}{2} \times 1.5 \times (37.4^2 - 10^2) = 1.5 \times 9.81 \times h$$

$$h = 44.1 \text{ m}$$
 1A

4. (a)(i)
$$m_Q v_Q = m_P v_P$$
 1M

$$v_p = 8 \times \frac{250}{300} = 6.67 \text{ m s}^{-1}$$
 1A

% loss =
$$\frac{\frac{1}{2}(0.25)(8)^2 - \frac{1}{2}(0.3)(6.67)^2}{\frac{1}{2}(0.25)(8)^2} = 16.7\%$$

(ii) 1M

Kinetic energy of Q is transferred to kinetic energy of P and some is lost as heat and sound.

(b)(i)
$$F = \frac{mv^2}{r}$$
 1M

$$T = \frac{0.3 \times 6.67^2}{1.5} = 8.89 \text{ N}$$
 1A

1A

1A

(ii)No. 1 If *P* becomes at rest, by conservation of momentum, speed of *Q* will become 8 m s⁻¹, which will violate the conservation of energy. 1

5. (a)Diffraction

(b)The path difference along <i>PY</i> varies.	1A
Hence, alternate constructive interference and destructive	
interference occurs along PY.	1A
$(c)(i) 1.5 \lambda$	1A
$1 - \frac{15 - 12}{2} - 2$ cm	
$(ii)^{\lambda} = \frac{1.5}{1.5} = 2 \text{ cm}$	1M
$v = f \lambda$	1M
$v = 10 \times 2 = 2 \text{ cm s}^{-1}$	1A

(d)The new wavelength = 3 cm

$$\frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$
 1M

$$v_2 = v_1 \times \frac{3}{2} = 1.5v_1$$

 \therefore the percentage change of the wave speed is +50% 1A

6. (a)
$$R \propto T$$
 1M

$$R = 4000 \times \frac{100 + 273}{30 + 273} = 4920 \ \Omega$$
1A

(b)(i)
$$V = 6 \times \frac{3000}{4000 + 5000}$$
 1M
 $V = 3.33 \text{ V}$ 1A

(ii)Lower.

1A

1A

Current through a thermistor generates heat, which raises the temperature of the thermistor above that of its environment. 1A

8. (correct procedures)	2A
(Correct circuit diagram)	1A
(Correct measurements)	1A
(Correct analysis)	1A
copper wire	\square

P

Procedure:

- Connect the ammeter, the copper wire and the resistor in series with the power supply while connect the voltmeter across part of the copper wire with crocodile clips.
- 2. Record the ammeter reading *I*.
- 3. Record the voltmeter reading V and the length of the copper wire across the voltmeter l.
- 4. Repeat step 3 by varying the position of the clip on the copper wire. Analysis:

Plot a graph *V/I* against *l*.

A straight line passing through origin should be obtained.

Q

$N = 480 \times \frac{12}{2} = 240$	
9. (a)(i) $N_{cd} = 480 \times \frac{1}{24} = 240$	1A
(ii) $VI \times 90\% = P_{out}$	1M
$24I \times 90\% = 6$	
I = 0.278 A	1A
(b)The voltage across $QX = 12$ V	
So, the voltage across $XP = 12$ V	
$\frac{12}{12} - \frac{12}{12} + \frac{6}{12}$	
$R_{XP} - R_{QX} + 12$	1M
$\int R_{XO} = 100r$	
R = 100(1-r), where r is the required ratio	11.7
$(\Lambda_{XP} - 100(1-7))$	IM
by solving the above equations	
r = 0.815	1A
(c) Advantage:	
Lower power loss in transformer than in the potential divider	1A
Limitation:	

Circuit I only works in a.c.

10.(a)

1A

1A

R 2223-MOCK-PHY-MS $F_{\rm B}$

6

11.(a) ${}^{210}_{84}$ Po $\longrightarrow {}^{206}_{82}$ Pb $+ {}^{4}_{2}\alpha$	2A
(b)mass defect:	
= 209.98286 - 205.97447 - 4.002603	1M
$= 5.787 \times 10^{-3} u$	
$=5.787 \times 10^{-3} \times 931 \text{ MeV}$	
= 5.39 MeV	1A

(c)
$$k = \frac{\ln 2}{138}$$

 $k = 5.0228 \times 10^{-3} \text{ day}^{-1}$
 $k = 5.81 \times 10^{-8} \text{ s}^{-1}$
1A

$$A = kN$$

 $250 = 5.81 \times 10^{-8} N$
 $N = 4.30 \times 10^{9}$ 1M

$$N = N_0 e^{-kt}$$

$$N = 4.30 \times 10^9 e^{-(5.0228 \times 10^{-3})(365)}$$

$$N = 6.88 \times 10^8$$
1M

 \therefore number of nuclei decayed = $4.3 \times 10^9 - 6.88 \times 10^8 = 3.61 \times 10^9$ 1A

END OF PAPER 1

PAPER 2

Section C	Energy and Use of Energy
-----------	---------------------------------

3.1 A		3.2 A	3.3 B	3.4 D	
3.5 C		3.6 B	3.7 D	3.8 C	
(a) (i)	from outdo	or to indoor			1A
(ii) Heat is abso	orbed by the refrigera	int from the surround	ling.	1A
	The refrige	rant evaporates into v	apor.		1A
(iii	i) To increase	the contact surface a	rea with outdoor air	to facilitate heat exchang	e
	by conducti	ion.			1A
(b) (i)	rate of heat	lost:			
	$= UA\Delta T$				
	$-\frac{0.03}{4} \times (4$	$(2 \times 2 \times 4 \pm 2 \times 2 \times 2) \times 40$			
	- 0.02	~2~++2~2~2)~+0			1M
	= 2400 W				1A
	< 2.48 kW				
	So the air c	onditioner has enoug	h heating capacity.		1A
		-			
	E 150×	1000 0 172 1			
(ii	$E = \frac{1}{240 \times 6}$	$\overline{60 \times 60} = 0.175$ J			1A
ζ.	,				
	· · · · · ·	1 4 * 1	11 1	· · 1 · · · • • • • • • • • • • • • • •	c

(iii) The minimum electrical energy consumed by an electric heater to give 2480 J of heat energy is 2480 J which is much more than 0.173 J of an RCAC air con. 1A

1A

(iv) A fan can produce a forced convection current which enhance the energy exchange by convection.

Section	D	Medical	Physics
			•

41	D		42A		43A		44C	
4.5	$\frac{D}{C}$		4.6 B		4.7 B		4.8 D	
(a) (b)	Sho	ooting fast-m	oving electron	ns onto l	neavy met	al target.		1A 1A
(0)	(ii)	Bone is mu	ch denser thar	n soft tis	sue.			1A
	(iii)	$I = I_0 e^{-\mu x}$ $1.24 \times 10^{-4} I$ $1.24 \times 10^{-4} = -\ln 1.24 \times 1$ $x_b = 2.00 \text{ c}$	$\begin{aligned} I_0 &= I_0 e^{-0.51 x_s} e^{-2} \\ &= e^{-(0.51(10-x_b)+2.4)} \\ 0^{-4} &= 5.1 - 0.5 \\ \\ m \end{aligned}$	$\frac{2.46x_b}{16x_b}$, wh $1x_b + 2.4$	here $x_s + x$ $46x_b$	$_{\rm b} = 10 \ {\rm cm}$		1M 1A
(c)	X-ra Wh tiss	ay: en X-rays pa ues. The diff	ass through the erent attenuat	e body fi ion of X	rom outsic -rays give	le, they are s different l	absorbed by different brightness in image.	1A
	CT X-ra obta Tho sect	scan: ays source a ained by bac ose maps of a tion image o	nd detector ro k projection. attenuation are f the patient.	tate arou e stacked	ind the pa	tient. The n mats can b	naps of attenuation are e taken out as a cross	1A 1A
(d)	(i)	The different give a good	nce in linear a contrast in X	ttenuatio -ray ima	on coeffici ige.	ent of the l	iver is not significant to	0 1A
	(ii)	High radiat	ion dosage.					1A

END OF MARKING SCHEME