		Solution	Marks	Remarks
1	(x^{-3})	$y)^2 y^{-4}$		
1.		x^{-2}		
	$=\frac{x^{-1}}{2}$	$5y^2y^{-4}$	1M	for $(ab)^{\ell} = a^{\ell}b^{\ell}$ or $(a^{h})^{k} = a^{hk}$
		x ⁻²		c^p c^p 1
	$=x^{-\epsilon}$	$5^{-(-2)}y^{2+(-4)}$	1M	for $\frac{c}{c^q} = c^{p-q}$ or $\frac{c}{c^q} = \frac{1}{c^{q-p}}$
	$=x^{-4}$	y ⁻²		
	$=\frac{1}{r^4}$	$\frac{1}{v^2}$	1A	
	<u>л</u>	<u></u>		
			(3)	
2.		$\frac{a}{1} = \frac{2}{1-1}$		
	а - а(b	(+1) + (b+1)		
	ab	a = 2a + 2	1M	
	ab	-a=2	1M	for putting <i>a</i> on one side
	a(b -	-1) = 2		
		$a = \frac{2}{b-1}$	1A	or equivalent
			(3)	
3.	(a)	$2m^2 - 8n^2$	(3)	
		$=2(m^2-4n^2)$		
		=2(m+2n)(m-2n)	1A	or equivalent
	(b)	$3m - 2m^2 + 8n^2 - 6n$		
		$=3m-6n-2m^2+8n^2$		
		$= 3m - 6n - (2m^2 - 8n^2)$		
		= 3(m-2n) - 2(m+2n)(m-2n) = $(m-2n)[2-2(m+2n)]$	1M	for using the result of (a)
		= (m - 2n)[5 - 2(m + 2n)] = (m - 2n)(3 - 2m - 4n)	1A	or equivalent
			(3)	
4.	(a)	$x-2 \le 0$	1 4	
		$x \leq 2$ $3x \pm 2$	IA	
		$x - \frac{3x + 2}{2} < 2$		
		2x - (3x + 2) < 4		
		2x - 3x - 2 < 4		
		-x < 0 x > -6	1 A	
		Therefore, we have $x \le 2$ and $x > -6$.	111	
		Thus, the required range is $-6 < x \le 2$.	1A	

© Pearson Education Asia Limited 2018

	Solution	Marks	Remarks
	(b) 4	1A	
		(4)	
5.	(a) Let $y = \frac{k}{x^2}$, where k is a non-zero constant.	1A	
	So, we have $45 = \frac{k}{2^2}$.	1 M	for substitution
	Solving, we have $k = 180$.	1A	
	Thus, we have $y = \frac{180}{x^2}$.		
	(b) $20 = \frac{180}{x^2}$		
	$x^{2} = 9$ $x = 3 \text{ or } -3$	1A	
		(4)	
6.	Let C be the original cost price of the toy.		
	Original selling price of the toy		
	= \$ <i>C</i> × (1 + 20%)		
	=\$1.2 <i>C</i>		
	New cost price of the toy		
	= \$ <i>C</i> ×(1+25%)		
	= \$1.25 <i>C</i>	1A	
	New selling price of the toy	1.4	
	= \$(1.2 <i>C</i> + 36)	IA	
	$1.25C \times (1+20\%) = 1.2C + 36$	1M	
	1.5C = 1.2C + 36		
	0.3C = 36		
	C = 120	1A	
	Thus, the original cost price of the toy is \$120.		
		(4)	
7.	The maximum absolute error $=\frac{1}{2} \times 1 \text{ cm}$ = 0.5 cm		
	The lower limit of the actual diameter of the semi-circle		
	=(8-0.5) cm	1M	
	= 7.5 cm		
	The upper limit of the actual diameter of the semi-circle		for either one
	= (8 + 0.5) cm		;
	= 8.5 cm		

© Pearson Education Asia Limited 2018

	Solution	Marks	Remarks
	The lower limit of the actual area of the semi-circle		
	$=\frac{1}{2} \times \pi \times \left(\frac{7.5}{2}\right)^2 \text{ cm}^2$		
	$= 7.031 \ 25\pi \ \mathrm{cm}^2$		
	$\approx 22.089 \ 323 \ 34 \ \mathrm{cm}^2$	1A	
	The upper limit of the actual area of the semi-circle		
	$=\frac{1}{2} \times \pi \times \left(\frac{8.5}{2}\right)^2 \text{ cm}^2$		
	$= 9.031 \ 25\pi \ \mathrm{cm}^2$		
	$\approx 28.37250865 \text{ cm}^2$	1A	
	\therefore 22.089 323 34 cm ² \leq actual area of the semi-circle		
	$< 28.37250865 \mathrm{cm}^2$		
	Note that 30 cm^2 is not within the range of the actual area of		
	the semi-circle.		
	Thus, the claim is disagreed.	1A	f.t.
		(4)	
8.	(a) $f(x) = (x^2 - 4)(x^{2018} + 2x^{2017}) + 3x + k$, where k is		
	a constant.	1M	
	\therefore $f(x)$ is divisible by $x-2$.		
	$\therefore f(2) = 0$	1M	
	$\therefore (2^2 - 4)(2^{2018} + 2 \times 2^{2017}) + 3(2) + k = 0$	1.4	
	$\kappa = \underline{-0}$	IA	
	(b) Remainder		
	= f(-1)	1M	
	$= [(-1)^{2} - 4][(-1)^{2013} + 2(-1)^{2017}] + 3(-1) - 6$		
	= (-5)(-1) - 5 - 6 = -6	1A	
		(5)	
0		(5)	
9.	Let x and y be the numbers of red balls and black balls		
	$\left(\begin{array}{c} r+1 \\ 1 \end{array} \right)$)	
	$\frac{x+1}{x+y+1} = \frac{1}{2}$		
	$\int \frac{y+1}{z} = \frac{3}{z}$	A + IA	
	$\begin{pmatrix} x+y+1 & 5 \end{pmatrix}$	J	
	So, we have $\begin{cases} x = y - 1 \\ 2 = 2 = 2 = 0 \end{cases}$		
	(3x-2y-2=0)		
1			

	Solution			Remarks
	Ther	refore, we have $3(y-1) - 2y - 2 = 0$.	1 M	for getting a linear equation in <i>x</i> or <i>y</i> only
	Solv	ing, we have $x = 4$ and $y = 5$.	1A	for both correct
	The	required probability = $\frac{4+1}{(4+1)+(5+1)}$		
		$=\frac{5}{\underline{11}}$	1A	
			(5)	
10.	(a)	Note that $\angle ADC + \angle BAD = 180^{\circ}$ (int. $\angle s$, $AB // DC$). So, we have $\angle ADC = 180^{\circ} - \theta$. Also, note that	1A	
		$\angle CBA + \angle ADC = 180^{\circ}$ (opp. $\angle s$, cyclic quad.). So, we have $\angle CBA + (180^{\circ} - \theta) = 180^{\circ}$. Therefore, we have $\angle CBA = \theta$.	1A	
	(b)	$\therefore \angle BAD = \angle CBA \text{(proved in (a))}$ $\therefore \frac{\widehat{BCD}}{\widehat{ADC}} = \frac{\angle BAD}{\angle CBA} = \frac{1}{1} \text{(arcs prop. to } \angle \text{s at } \odot^{\text{ce}}\text{)}$ $\therefore \widehat{BCD} = \widehat{ADC}$ $\widehat{BC} + \widehat{CD} = \widehat{AD} + \widehat{CD}$ $\therefore \widehat{BC} = \widehat{AD}$		
	(c)	Marking Scheme:Case 1Any correct proof with correct reasons.Case 2Any correct proof without reasons. \therefore $\widehat{AD} = \widehat{BC}$ (proved in (b)) \therefore $\angle AOD = \angle BOC$ (equal arcs, equal \angle s) $= 2\angle BAC$ (\angle at centre twice \angle at \bigcirc^{ce})Thus, the claim is agreed.	1 1 1 1 1 1 1 1 1 1 1 1 1	f.t.
			(6)	

		Solution	Marks	Remarks
11.	(a)	In $\triangle CBQ$ and $\triangle CDP$,		
		CB = CD (property of square)		
		$\angle CBQ = 180^\circ - \angle ABC$ (adj. $\angle s$ on st. line)		
		$=180^{\circ}-90^{\circ}$ (property of square)		
		= 90°		
		$= \angle CDP$ (property of square)		
		BQ = DP (given)		
		$\therefore \triangle CBQ \cong \triangle CDP \qquad (SAS)$		
		Marking Scheme:		
		Case 1 Any correct proof with correct reasons.	2	
		Case 2 Any correct proof without reasons.	1	
	(b)	Note that $\angle BCD = 90^{\circ}$ (property of square).		
		So, we have $\angle BCP = 90^\circ - \angle DCP$.		
		Also, note that $\angle BCQ = \angle DCP$ (corr. $\angle s, \cong \triangle s$).		
		So, we have $\angle PCQ = (90^\circ - \angle DCP) + \angle BCQ$.	1 M	
		1.e. $\angle PCQ = 90^{\circ}$ Thus $\triangle CPQ$ is a right angled triangle	1 A	ft
		Thus, $\triangle CPQ$ is a right-angled triangle.	IA	1.1.
	(c)	$CP = CQ = 8 \text{ cm}$ (corr. sides, $\cong \triangle s$)		
		Area of right-angled triangle CPQ		
		$=\frac{8\times8}{2}$ cm ²		
		-32 cm^2		
		$PQ^2 = CP^2 + CQ^2$ (Pyth. theorem)		
		$PQ = \sqrt{8^2 + 8^2} \text{ cm}$		
		$=\sqrt{128}$ cm		
		Let d cm be the shortest distance from C to PQ .		
		$\sqrt{128} \times d_{-32}$	1M	
		$\frac{1}{2}$ - 32	1111	
		$d = \frac{64}{\sqrt{128}}$		
		V120		
		Note that $\frac{64}{\sqrt{128}}$ cm > 5 cm.		
		Thus, there is no point F on PQ such that the distance		
		between F and C is 5 cm.	1A	f.t.
			(6)	

	Solution	Marks	Remarks
12. (a)	Let $\{a, b, c, d, e\}$ be the time taken by the girls,		
	arranged in ascending order.		
	The median of the time taken by the $boys = 7 min$		
	The median of the time taken by the $girls = 8 min$		
	So, we have $c = 8$.		
	The mode of the time taken by the boys $= 8 \min$		
	The mode of the time taken by the girls $= 9 \text{ min}$		
	So, we have $d = e = 9$.		
	The mean of the time taken by the $boys = 6 min$		
	The mean of the time taken by the girls $= 7 \text{ min}$		
	Thus, we have $\frac{a+b+8+9+9}{5} = 7$.	1M	
	Solving, we have $a + b = 9$.		
	The inter-quartile range of the time taken by the girls		
	$= \left(\frac{9+9}{2} - \frac{a+b}{2}\right) \min$		
	$=\left(9-\frac{9}{2}\right)$ min		
	$= 4.5 \min$	1A	
	The inter-quartile range of the time taken by the boys		
	$= (8-4) \min = 4 \min$	IA	
	Thus, the inter-quartile range of the time taken by the		
	girls is not 1 minute more than that of the boys.	1A	f.t.
(h)	The serves of the time taken has the base		
(D)	The range of the time taken by the boys = $(8 - 2)$ min = 6 min	1.4	
	-(0, 2) min -0 min	IA	
	Thus, the range of the time taken by the grists is 7 min. So we have $0 = a = 7$		
	So, we have $y - u - 1$.	1.4	
	Since $a+b=0$ we have $b=7$	IA	for <i>a</i> , <i>b</i> both correct
	The standard deviation of the time taken by the circle		
	≈ 2.61 min	1A	
		(7)	

			Solution	Marks	Remarks
13.	(a)	Let	$x^{2} + y^{2} + Dx + Ey + F = 0$ be the equation of <i>C</i> .		
		Putti	ing $x = 0, y = 2$ in C, we have	h	
		$0^{2} +$	$-2^2 + D(0) + E(2) + F = 0$		
		Putti	ing $x = 4$, $y = 0$ in C, we have		
		4 ² +	$0^{2} + D(4) + E(0) + F = 0$		for substituting P, Q and R
		Putti	ing $x = 9$, $y = 5$ in C, we have		
		9 ² +	$5^2 + D(9) + E(5) + F = 0$	ע ע	
			$\int 2E + F + 4 = 0$		
		So, v	we have $\begin{cases} 4D + F + 16 = 0 \\ . \end{cases}$		
			9D + 5E + F + 106 = 0		
		Solv	ing, we have $D = -8$, $E = -10$ and $F = 16$.	1A	
		Thus	s, the equation of <i>C</i> is $x^2 + y^2 - 8x - 10y + 16 = 0$.	1A	
	(b)	Cent	thre of $C = \left(-\frac{(-8)}{2}, -\frac{(-10)}{2}\right) = (4, 5)$		
		Radi	is us of $C = \sqrt{\left(\frac{-8}{2}\right)^2 + \left(\frac{-10}{2}\right)^2 - 16} = 5$		
		Dista	ance between M and the centre of C		
		=	$\overline{(5-4)^2+(8-5)^2}$	1M	
		$=\sqrt{1}$		1111	
		< 5			
		Thus	s, <i>M</i> lies inside <i>C</i> .	1	
	(c)	(i)	G, M and N are collinear.	1 M	
		(ii)	The slope of the straight line which passes		
			through M and N		
			= the slope of the straight line which passes		
			through M and G		
			8-5		
			$=\frac{1}{5-4}$		
			= 3		
			The required equation is		
			y-5=3(x-4)	1M	
			y-5=3x-12		
			3x - y - 7 = 0	1A	or equivalent
				(8)	1

© Pearson Education Asia Limited 2018

	Solution			Marks	Remarks
14.	(a)	f(1	$2) = 12^3 - 96(12) - 576$		
			= 0	1 M	
		<i>.</i> .	x-12 is a factor of $f(x)$.		
		<i>.</i>	$f(x) = \underline{(x-12)(x^2 + 12x + 48)}$	1A	
	(b)	(i)	Let h_A cm and h_B cm be the depths of water of		
			containers A and B after pumping water for		
			44 seconds respectively.		
			Note that the corresponding radius of the water		
			surface of container $A = \frac{9}{18}h_A$ cm $= \frac{h_A}{2}$ cm.		
			So, we have		
			$\frac{1}{3} \times \pi \times \left(\frac{h_A}{2}\right)^2 \times h_A = 2\pi \times 35$		
			$\frac{{h_A}^3\pi}{12}=70\pi$		
			$h_A^{\ 3} = 840$		
			$h_{A} \approx 9.435\;387\;960$	1A	
			Also, we have		
			$\pi \times 4^2 \times h_B = \pi \times 44$		
			$h_B = 2.75$	1A	
			$\therefore h_A > h_B$		
			\therefore The water level in container <i>A</i> is higher		
			after pumping water for 44 seconds.	1A	f.t.
		(ii)	Let h cm be the depth of water when the water		
			reaches the same level in the two containers.		
			Note that the corresponding radius of the water		
			surface of container $A = \frac{9}{18}h \operatorname{cm} = \frac{h}{2}\operatorname{cm}$.		
			$\frac{\frac{1}{3} \times \pi \times \left(\frac{h}{2}\right)^2 \times h - 2\pi \times 35}{3} = \frac{\pi \times 4^2 \times h - 44\pi}{3}$	1 M	
			$\pi \qquad 2\pi \\ \frac{1}{12}h^3 - 70 = 8h - 22$		
			$h^3 - 96h - 576 = 0$		
			$(h-12)(h^2+12h+48) = 0$	1M	for using the result of (a)

	Solution			Remarks
		Hence, we have $h - 12 = 0$ or $h^2 + 12h + 48 = 0$.		
		Note that $h^2 + 12h + 48 = 0$ has no real solutions.		
	So, we have $h = 12$.			
		Thus, the depth of water when the water reaches		
		the same level in the two containers is 12 cm.	1A	f.t.
			(8)	
15.	(a)	The required probability		
		$=\frac{C_{5}^{6}}{2}$	1M	for numerator
		C_{5}^{10}		
		$=\frac{1}{42}$	1A	r.t. 0.0238
		4 2		
	[
		Alternative Solution		
		The required probability		
		$=\frac{6}{10}\times\frac{5}{9}\times\frac{4}{8}\times\frac{3}{7}\times\frac{2}{6}$	1M	
		1	1 4	
		$=$ $\frac{42}{42}$	IA	r.t. 0.0238
	l			
	(b)	The required probability		
		$1 C_4^6 C_1^4 C_3^6 C_2^4$	13.6	Constant and the second s
		$=\frac{1}{42} + \frac{1}{C_5^{10}} + \frac{1}{C_5^{10}}$	IM	for (a) + $p_1 + p_2$
		$=\frac{1}{2}+\frac{5}{2}+\frac{10}{2}$		
		42 21 21 31		
		$=\frac{31}{42}$	1A	r.t. 0.738
	г			
		Alternative Solution		
		The required probability		
		$=1-\frac{C_2^6C_3^4}{10}-\frac{C_1^6C_4^4}{10}$	1M	for $1 - p_3 - p_4$
		C_5^{10} C_5^{10}		
		$=1-\frac{3}{21}-\frac{1}{42}$		
		_ <u>31</u>	1A	r.t. 0.738
		<u>42</u>		
	l			

	Solution	Marks	Remarks
	Alternative Solution		
	The required probability		
	$=\frac{1}{42}+C_1^5\times\frac{6}{10}\times\frac{5}{9}\times\frac{4}{8}\times\frac{3}{7}\times\frac{4}{6}+C_2^5\times\frac{6}{10}\times\frac{5}{9}\times\frac{4}{8}\times\frac{4}{7}\times\frac{3}{6}$	1M	for (a) + $p_5 + p_6$
	$=\frac{31}{42}$	1A	r.t. 0.738
		(4)	
16.	Let <i>m</i> and σ be the mean and the standard deviation of		
	the salaries respectively and x_1 , x_2 be the salaries of Chris and		
	John respectively.		
	Note that the standard scores of Chris and John are 1 and -2		
	respectively.		
	So, we have $\frac{x_1 - m}{\sigma} = 1$ and $\frac{x_2 - m}{\sigma} = -2$.	1M	for either one
	Solving, we have $\frac{x_1 - x_2}{\sigma} = 3$.		
	Note that the difference in their salaries is \$3000.		
	i.e. $x_1 - x_2 = 3000$	1 M	
	So, we have $\frac{3000}{\sigma} = 3$.		
	Thus, we have $\sigma = 1000$.	1A	
	Variance of the distribution of the salaries		
	$=\sigma^2$		
	= \$(1000 ²)		
	$=$ $\frac{1000\ 000}{1000}$	1A	
		(4)	

	Solution			Remarks
17.	(a)	$f(x) = 24x - 2x^2$		
		$=-2(x^2-12x)$		
		$= -2(x^2 - 12x + 6^2) + 2(6^2)$	1M	
		$=-2(x-6)^2+72$		
		Thus, the coordinates of the vertex are (6, 72).	1A	
	(b)	(i) Note that $\triangle AEF \sim \triangle ACB$ (AAA).		
		$\frac{AF}{AB} = \frac{EF}{CB} (\text{corr. sides, } \sim \bigtriangleup s)$ $\frac{AF}{18 \text{ cm}} = \frac{x \text{ cm}}{12 \text{ cm}}$	1M	
		$AF = \frac{3}{2} x \text{ cm}$ Hence, $ED = \left(18 - \frac{3}{2} x\right) \text{ cm}$. Area of rectangle <i>BDEF</i>	1A	
		$= x \left(18 - \frac{3}{2} x \right) \text{cm}^{2}$ $= \left(\frac{18x - \frac{3}{2} x^{2}}{2} \right) \text{cm}^{2}$ (ii) Area of rectangle <i>BDEF</i>	1A	or equivalent
		$= \left(18x - \frac{3}{2}x^{2}\right) \operatorname{cm}^{2}$ $= \frac{3}{4}(24x - 2x^{2}) \operatorname{cm}^{2}$ $= \frac{3}{4}[-2(x - 6)^{2} + 72] \operatorname{cm}^{2}$ $= \left[-\frac{3}{2}(x - 6)^{2} + 54\right] \operatorname{cm}^{2}$ The greatest value of the area of rectangle <i>BDEF</i> is 54 cm ² < 60 cm ² . Thus, Pater's claim is disagreed	1M	for using the result of (a)
		Thus, Peter's claim is disagreed.		f.t.

	Solution	Marks	Remarks
	Alternative Solution		
	Assume that the area of rectangle $BDEF > 60 \text{ cm}^2$.		
	$18x - \frac{3}{2}x^2 > 60$		
	$\frac{3}{2}(12x - x^2) > 60$		
	$12x - x^2 > 40$		
	$x^2 - 12x + 40 < 0$		
	$\Delta = (-12)^2 - 4(1)(40) = -16 < 0$	1M	
	Therefore, we have $x^2 - 12x + 40 > 0$.		
	This is impossible.		
	Thus, Peter's claim is disagreed.	1A	f.t.
		(7)	-
10 (a) Consider $\wedge ABC$	(7)	
18. (a) Consider $\triangle ABC$.		
	By cosine formula, we have $(-2^2 - 2^2) + 2^2$		
	$\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2(AB)(BC)}$	1M	
	$\cos \angle ABC = \frac{29^2 + 92^2 - 75^2}{2(29)(92)}$		
	$\cos \angle ABC = \frac{20}{29}$		
	Consider right-angled triangle ABD.		
	$\cos \angle ABD = \frac{BD}{AB}$		
	AB 20 BD		
	$\frac{1}{29} = \frac{1}{29} \text{ cm}$		
	BD = 20 cm	1A	
	$AD = \sqrt{AB^2 - BD^2}$ (Pyth. theorem)		
	$=\sqrt{29^2-20^2}$ cm		
	$= 21 \mathrm{cm}$	1A	

	Solution	Marks	Remarks
	<u>Alternative Solution</u> Consider $\triangle ABC$. By cosine formula, we have $\cos \angle ACB = \frac{AC^2 + BC^2 - AB^2}{2(AC)(BC)}$ $\cos \angle ACB = \frac{75^2 + 92^2 - 29^2}{2(75)(92)}$	1M	
	$\cos \angle ACB = \frac{24}{25}$ Consider right-angled triangle <i>ACD</i> . $\cos \angle ACB = \frac{CD}{AC}$ $\frac{24}{25} = \frac{CD}{75 \text{ cm}}$ $CD = 72 \text{ cm}$ $AD = \sqrt{AC^2 - CD^2} (Pyth. \text{ theorem})$ $= \sqrt{75^2 - 72^2} \text{ cm}$ $= 21 \text{ cm}$	1A	
	BD = BC - CD = (92 - 72) cm = 20 cm	1A	
(b)	(i) Consider $\triangle ABC$. By cosine formula, we have $BC^{2} = AC^{2} + AB^{2} - 2(AC)(AB) \cos \angle CAB$ $BC = \sqrt{75^{2} + 29^{2} - 2(75)(29)} \cos 60^{\circ} \text{ cm}$ $BC = \sqrt{4291} \text{ cm}$ Note that $CD = (92 - 20) \text{ cm} = 72 \text{ cm}$	1M	
	Note that $CD = (92 - 20) \text{ cm} = 72 \text{ cm}$. Consider $\triangle BCD$. By cosine formula, we have $\cos \angle CDB = \frac{CD^2 + BD^2 - BC^2}{2(CD)(BD)}$ $\cos \angle CDB = \frac{72^2 + 20^2 - (\sqrt{4291})^2}{2(72)(20)}$ $\angle CDB \approx 63.323 \ 128 \ 68^\circ$ $\approx 63.3^\circ$	1M	r.t. 63.3°
	Note that $AD \perp BD$ and $AD \perp CD$. Hence, the required angle is 63.3°.	1A	f.t.

Solution			Solution	Marks	Remarks
		(ii)	Let P be the point on BD produced such that		
			$CP \perp BD.$		
			\therefore The plane <i>BCD</i> is perpendicular to the		
			horizontal ground.		
			\therefore <i>CP</i> is the height of the tetrahedron <i>ABCD</i>		
			with the base $\triangle ABD$.		
			Consider right-angled triangle CDP.		
			$\sin \angle CDP = \frac{CP}{CP}$		
			<i>CD</i> <i>CP</i> ≈ 72 sin 63 323 128 68° cm		
			Volume of the tetrahedron <i>ABCD</i>		
			$=\frac{1}{2} \times \text{area of } \triangle ABD \times CP$	1M	
			$1 20 \times 21$ 72 . (2 222 128 (89 3		
			$\approx \frac{-1}{3} \times \frac{-1}{2} \times 12 \sin 63.525 128 68^{\circ} \text{ cm}$		
			$\approx 4503.505\ 572\ \mathrm{cm}^3$		
			$\approx \frac{4500 \text{ cm}^3}{2}$	1A	r.t. 4500 cm^3
				(8)	
19.	(a)	(i)	Amount of donation on 31st December 2018		
			$= 50 \times 1.04 \times 0.1$ million dollars		
			= <u>5.2 million dollars</u>	IA	
		(ii)	Amount of donation on 31st December 2021		
			$=50 \times 1.04^4 \times 0.9^3 \times 0.1$ million dollars	1M	
			= 4.264 134 451 million dollars		
				IA	
	(b) Total amount of donation				
	$=\frac{50\times1.04\times0.1}{100}$ million dollars		1M	for $S(\infty) = \frac{a}{1-\alpha}$	
	$1 - 1.04 \times 0.9$		1 4	1 - r	
	< 85 million dollars		IA		
		Hence, the total amount of donation cannot exceed			
		85 n	nillion dollars.	1A	f.t.

Solution	Marks	Remarks
(c) (i) Amount of donation on 31st December 2021 $= \begin{cases} \{[(50 \times 1.04 \times 0.9 + 60) \times \\ 1.04 \times 0.9 + 60] \times \\ 1.04 \times 0.9 + 60\} \times \\ 1.04 \times 0.1 \end{cases} $ million dollars	1M	
$= \begin{pmatrix} 50 \times 1.04^{4} \times 0.9^{3} + \\ 60 \times 1.04^{3} \times 0.9^{2} + \\ 60 \times 1.04^{2} \times 0.9 + \\ 60 \times 1.04 \end{pmatrix} \times 0.1 \text{ million dollars}$ $\approx 21.811 \text{ 613 49 million dollars}$ $\approx 21.8 \text{ million dollars}$	1A	r.t. 21.8 million dollars
(ii) Let <i>n</i> be the required number of years.		
$\begin{bmatrix} 50 \times 1.04^{n} \times 0.9^{n-1} + \\ 60 \times 1.04 \times \frac{1 - (1.04 \times 0.9)^{n-1}}{1 - 1.04 \times 0.9} \end{bmatrix} \times 0.1 > 85$	1M	
$\binom{0.32 \times 1.04^{n} \times 0.9^{n-1} + 6 \times 1.04 -}{6 \times 1.04^{n} \times 0.9^{n-1}} > 5.44$		
$(1.04 \times 0.9)^n < \frac{9}{71}$ $n \log 0.936 < \log \frac{9}{71}$ $\log \frac{9}{71}$	1M	
$n > \frac{100}{\log 0.936} \frac{71}{\log 0.936}$		
Solving, we have $n > 31.228\ 628\ 17$.	1A	
\therefore The amount of donation will first exceed		
85 million dollars on 31st December 2049		
(i.e. on 31st December of the 32th year).	1A	f.t.
	(12)	