G12 Physics Mock 2022 Paper 2 (Solutions) ### **Section E2: Atomic World** #### **Multiple-choice questions** | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |---|---|---|---|---|---|---|---| | A | В | D | С | В | В | В | С | #### **Structured question** (a) (i) $$L_1$$: 1.80 eV; L_2 : 3.80 eV ($E_{\text{in eV}} = hf/e$) 1A (for all correct) - (ii) (1) It is because even the most energetic electron cannot escape from the metal surface for L_2 . (OR It is because the photon energy < work function of the metal) (1A) - (2) rate of photoelectrons emission = $\frac{i}{e} = \frac{0.2 \times 10^{-6}}{1.6 \times 10^{-19}} = 1.25 \times 10^{12} \text{ s}^{-1}$ 1M number of photon emitter per second = $1.25 \times 10^{12} \times 1200$ = $1.5 \times 10^{15} \text{ s}^{-1}$ 1A - (iii) L_1 : $0~\mu A$; L_2 : $0.80~\mu A$ (current proportional to light intensity for L_2) 2A (@1A) (iv) $$K_{max} = \frac{hc}{\lambda} - W$$ $$\frac{1}{2} (9.11 \times 10^{-31}) v_{max}^2 = \frac{(6.63 \times 10^{-34})(3 \times 10^8)}{110 \times 10^{-9}} - (2.3)(1.6 \times 10^{-19})$$ 1M $$v_{max} = 1778134 = 1.78 \times 10^6 \text{ m s}^{-1}$$ - (b) The <u>varying size</u> of the soundtrack leads to a <u>varying intensity (or amount)</u> 1A of light shining onto the photocell. - A <u>varying</u> (photoelectric) <u>current</u> and hence a sound signal is then produced 1A # **Section E3: Energy and Use of Energy** ## **Multiple-choice questions** | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |---|---|---|---|---|---|---|---| | В | С | Α | В | D | С | A | D | | (a) | (i) | No. / It is a non-renewable energy source. | 1A | | | | |-----|-------------------|---|------------|--|--|--| | | | Nuclear power does not come from natural resource / process. OR The supply of nuclear power is exhaustible / cannot be replenished constantly. | 1A | | | | | | (ii) | Energy is released when the U-235 captures a (slow-moving) neutron and splits into two lighter nuclei (with higher binding energy per nucleon). | | | | | | | | Two (or three) neutrons are produced by a fission process. The chain reaction takes place when these neutrons are captured by another uranium-235 nucleus. | 1 A | | | | | | (iii) | Pressurized water has a higher boiling point (> 300°C at ~153 atm). OR The water can be heated to a higher temperature without boiling. OR The pressurized water absorbs / transfers energy more effectively. | 1A | | | | | | (iv) | Accept any ONE below and other reasonable answer minimize the amount of radioactivity released to the environment in an accident better reactor design to avoid overheating and meltdowns of reactors protection of power station against natural disaster (eg tsunami) better protection of workers from radiation hazards | 1A | | | | | | (v) | Energy released per hour = $178 \times \frac{0.145}{(235)(1.661 \times 10^{-27})} = 6.612 \times 10^{25} \text{ MeV}$
Power output in MW = | 1M | | | | | | | $\frac{E}{t} = \frac{(6.612 \times 10^{25})(1.6 \times 10^{-19})}{3600} \times 30\% = 881.6 \approx 882 \text{ MW}$ | 1A | | | | | (b) | $P = \frac{1}{2}$ | $\frac{1}{2}\rho A v^3 = \left[(\frac{1}{2})(1.25)(\pi \times 30^2)(12^3) \right] \times 5 \times 0.4 \times 0.75 = 4580442 \text{ W} = 4.58 \text{ MW}$ | 1A | | | | | | Sinc | e 4.58 MW > 4 MW, the proposal can fulfil the required power supply. | 1 A | | | |