Diocesan Girls' School Secondary 6 Mock Examinations (2019-2020) Mathematics (Compulsory Part) Paper 1

Feb 2020

Time Allowed: 2 hours 15	minutes			Total marks: 105
Name:	()	Class:	_ Set:

Instructions:

- 1. This paper consists of THREE sections, A(1), A(2) and B.
- 2. Attempt ALL questions. Write your answers in the spaces provided in this Question-Answer Book.
- 3. Graph paper and supplementary answer sheets will be supplied on request. Write your name, class and class number on each sheet, and staple them INSIDE this book.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Question	Marks
No.	
No. 1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	

Question	Marks
No.	
10.	
11.	
12.	
13.	
14.	

Question	Marks
No.	
No. 15.	
16.	
17.	
18.	
19.	

Total Marks:

(4x)	$(x^2y^3)^3$	xpress your an		(3 ma	ai Ks
Factorize (a) $8a^2 + 24a$	$b + 18b^2$,				
(a) $8a^2 + 24a$		a – 48b .			
(a) $8a^2 + 24a$		a – 48b .		(4	m
		a – 48b .		(4	m
(a) $8a^2 + 24a$		a – 48b .			· m:
(a) $8a^2 + 24a$		a – 48b.		(4	- m
(a) $8a^2 + 24a$		a-48b.		(4	- m
(a) $8a^2 + 24a$		a – 48b .			- m
(a) $8a^2 + 24a$ (b) $8a^2 + 24a$	b+18b ² - 32a				
(a) $8a^2 + 24a$ (b) $8a^2 + 24a$	b+18b ² - 32a				
(a) $8a^2 + 24a$ (b) $8a^2 + 24a$	b+18b ² - 32a				
(a) $8a^2 + 24a$ (b) $8a^2 + 24a$	b+18b ² - 32a				
(a) $8a^2 + 24a$ (b) $8a^2 + 24a$	b+18b ² - 32a		 		

If $a = \frac{1}{3}(p+2)$ and $b = 3(2p+5)$, express b in terms of a.	(3 marks
(a) Round up 643.742 to 2 significant figures. (b) Round down 648.752 to 1 decimal place.	
(b) Round down 648.752 to 1 decimal place.	(3 ma
(b) Round down 648.752 to 1 decimal place.	(3 ma
(b) Round down 648.752 to 1 decimal place.	(3 ma
(b) Round down 648.752 to 1 decimal place.	
(c) Round off 648.742 to the nearest integer.	
(c) Round off 648.742 to the nearest integer.	
(c) Round off 648.742 to the nearest integer.	
(c) Round off 648.742 to the nearest integer.	
(c) Round off 648.742 to the nearest integer.	
(b) Round down 648.752 to 1 decimal place. (c) Round off 648.742 to the nearest integer.	
(c) Round off 648.742 to the nearest integer.	

2019-2	0 S.6 Mock Examinations – Mathematics (Compulsory Part) Paper 1
5.	The marked price of a bag is 25% above its cost. A profit of \$75 is made by selling the bag at a

	> 5 + 4 x .
(a) Find the range of values of x which satisfy both $\frac{2x+5}{3}$ (b) Write down the smallest integer satisfying the inequality	
	> 5 + 4x.

7. The frequency distribution table and the cumulative frequency distribution table below show the distribution of the weights of newborn babies in a hospital.

Weight (kg)	Frequency
2.1 - 2.4	7
2.5 - 2.8	а
2.9 - 3.2	20
3.3 - 3.6	b
3.7 - 4.0	17
4.1 - 4.4	С

Weight less than (kg)	Cumulative frequency
2.45	x
2.85	24
3.25	у
3.65	78
4.05	Z
4.45	100

(a) Find a, b and c.

(b)	If a baby is randomly selected	I from the hospital,	, find the probabili	ty that the weight of the
	selected baby is less than 4.05	5 kg but not less tha	an 3.25 kg.	

(5 marks)

	In a polar coordinate system, O is the pole. The polar coordinates of the points A and B are $(20, 70^{\circ})$ and $(20, 160^{\circ})$ respectively. P is point on AB such that OP is the axis of reflection					
symmetry of $\triangle OAB$.						
	(a) Describe the geometric relationship between <i>OP</i> and <i>AB</i> .					
	(b) Find the polar coordinates of <i>P</i> . (Give the answer in surd form if necessary.)					
	(4	m				

9. Town A and town B are 15 km apart. The figure shows the graphs for Ken and Billy running on the same straight road between town A and town B during the period 9:00 to 11:00 in the morning. They start at 9 a.m. and Billy runs at a constant speed. Ken comes to rest at 9:22.

- (a) How far are Ken and Billy from town B when they meet?
- (b) Billy claims that he runs faster than Ken on average. Do you agree? Explain your answer.

(4 marks)

Section A(2) (35 marks)

10. The stem-and-leaf diagram below shows the time spent on reading (in hours) in a week of the students in a reading club.

Stem (tens)	Leaf	(units)							
1	а	2	3	3					
2	С	2	2	4	6	6	7	7	9
3	0	0	b						

It is given that the inter-quartile range of the distribution is 11 hours.

(a) Find the value of <i>c</i> .	(2 marks)
(b) It is given that the mean of the distribution is 23 hours and the less than 25 hours. Find <i>a</i> and <i>b</i> .	range of the distribution is not (3 marks)

(b) If $a: h = 1:300$, find the values of a and h .	(2 marks)
(c) Using the method of completing the square, find the minimum value of <i>h</i> and the corresponding value of <i>a</i> .	e (3 marks)

Let $h(x) = 4x^2 + 7x + 3$ and $g(x) = 8x^2 + 26x + 15$. If $12g(x) - 11xh(x)$ is divisible	e by $x-3$.
(a) Find the H.C.F. and L.C.M. of $h(x)$ and $g(x)$.	(2 marks)
(b) Simplify $\frac{14}{g(x)} - \frac{1}{h(x)}$.	(2 marks)
(c) If $4g(x) - h(x) - 3a$ is divisible by $x - 3$, find the value of a .	(2 marks)

S.6 Mock Examinations – Mathematics (Compulsory Part) Paper 1

13. Figure 1a shows a metal bucket A in the shape of a right cylinder. The curved surface of the bucket is formed by the iron sheet PQRS shown in figure 1b, where PQ = 10 cm and area = 80π cm².

(c) Another metal bucket B in the shape of a right cylinder is shown in the figure below. Its curved surface is formed by the iron sheet TWYZ, where TW=12 cm and $TZ=8\pi$ cm. Are buckets A and B similar? Explain your answer.

-	

14. In the figure, O is the centre of the circle and AEODC is a straight line. AB and BC are tangents to the circle at X and Y respectively and $AB \perp BC$. AB = 12 and BC = 16.

(a) Find the radius of the circle,	(3 marks)
(b) (i) Without finding the angles, prove that $\angle YOD = 2\angle CYD$. (ii) Hence, find $\angle CYD$.	(4 marks)
(c) V is a point between X and B such that $YD//VO$. Find VX .	(3 marks)

-	
_	
_	
-	
-	
_	
_	

Section B (35 marks)

15.	In a box there are 3 green balls, 6 red balls and 7 blue balls. 4 balls are drawn randomly from the box at the same time.							
	(a) Find the probability that exactly 2 green balls, 1 blue ball and 1 red ball are drawn.	(2 marks)						
	(b) Find the probability that at least one ball of each colour is drawn.	(2 marks)						

16	The 21st term and the 5th term of a geometric seguence are 000 and 400 respectively.	
16.	The 3 rd term and the 5 th term of a geometric sequence are 900 and 400 respectively.	
	(a) Find the first term of the sequence.	(2 marks)
	(b) If the common ratio is positive, find the least value of n such that the difference bet $(n+1)^{\text{th}}$ term and the $(2n+1)^{\text{th}}$ term is less than 2×10^{-5} .	ween the
		(4 marks)
_		
_		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		

(coo	given that AB is a line segment of length 5 and P is a moving point in the redinate plane such that the area of $\triangle ABP$ is 20. Denote the locus of P by Γ . So B are the points $(0, 3)$ and $(4, 6)$.	
((a)	Find the equation of Γ .	(3 marks
((b)	Find the coordinates of P when $\triangle ABP$ is an isosceles triangle.	(3 marks

18. The figure shows a triangular prism in which the bases are equilateral triangles PQR and TWS. PRST, PQWT and RQWS are squares. It is given that PR = 2 cm and M is the mid-point of TW.

(a) Find $\angle MPS$.	(2 marks)
(b) Find the angle between the plane MPS and the plane PTSR.	(4 marks)
(c) If D is a moving point on ΔPQR , is the area of ΔDSW minimum when D is at P ? If your answer.	Explain (2 marks)

_	
_	
_	
_	
-	

2019	-2020 S.6 N	Mock Examinations – Mathematics (Compulsory Part) Paper 1	
19.		wen that $A(2, 6)$ is the centre of a circle C with radius r .	
			(1 marts)
	(a) WII	te down the equation of the circle C in terms of r .	(1 mark)
		e C'is obtained by reflecting the circle C with respect to the y-axis and ly by c units. $P(a, b)$ and $Q(d, e)$ are the points of intersection of C and $\frac{1}{2}$.	
	(b) (i)	Find the value of c and determine whether the reflected circle should upward or downward.	be translated
	(ii)	Find the equation of PQ .	
	(iii)	Hence find, in terms of r , the value of $(a-d)^2$.	
			(8 marks)
		student claims that when $PQ = 4\sqrt{5}$, $B(-1,1)$ lies inside C . Do you agower.	ree? Explain your (2 marks)

_	
_	
_	
_	
_	
_	

2020 S.6 Mock Examinations – Mathematics (Compulsory Part) Paper 1