S.6 MATHEMATICS MOCK EXAM 2020 - 2021

MARKING SCHEME

PAPER 1 - CONVENTIONAL QUESTIONS

The ceiling mark deduction for "PP" is **2 marks** (@ 1 mark) and for "U" is **1 mark** (@ 1 mark) for the whole paper.

	Solution	
1.	$\frac{(2a^{-3}b)^4}{4a^2b^{-5}} = \frac{16a^{-12}b^4}{4a^2b^{-5}}$ $= 4a^{-12-2}b^{4+5}$ $= \frac{4b^9}{a^{14}}$	
2. (a)	$2a^{2} + 5ab + 2b^{2}$ = (2a + b)(a + 2b)	
(b)	$2a^{2} + 5ab + 2b^{2} - 6a - 12b$ = $(2a + b)(a + 2b) - 6(a + 2b)$ = $(a + 2b)(2a + b - 6)$	
3. (a)	$p = \frac{1}{4}(3q - 1)$ $4p = 3q - 1$ $3q = 4p + 1$ $q = \frac{4p + 1}{3}$	
(b)	Change in $q = \frac{4(p+1)+1}{3} - \frac{4p+1}{3}$ = $\frac{4p+4+1-4p-1}{3}$ = $\frac{4}{3}$	
4. (a)	$\frac{-5-5x}{6} < 3(x+1) \text{and} 2x-7 < 0$ -5-5x < 18x + 18	
	$x > -1$ and $x < \frac{7}{2}$	
	$\therefore -1 < x < \frac{7}{2}$	
(b)	0	

		Solution	
5.		Let 5k and 9k be the original number of read balls and yellow balls respectively. $\frac{5k + 500}{9k + 200} = \frac{3}{4}$ $20k + 2000 = 27k + 600$ $k = 200$ $\therefore \text{ the original number of red balls} = 1000.$	
6.	(a)	Let x cm be the height of John. $x(1 + 20\%) = 150$ $x = \frac{150}{1.2}$ $x = 125$ \therefore Height of John is 125 cm.	
	(b)	Height of Alice = $150 \times (1 - 20\%)$ = 120 cm $\neq 125 \text{ cm}$ \therefore Alice and John are not of the same height.	
7.	(a)	The maximum absolute error = 5 g The least possible weight = $460 - 5$ = 455 (g)	
	(b)	The least possible total weight of 90 air tablets = 455 × 90 g = 40 950 g = 40.95 kg > 40.85 kg The claim is disagreed	
		$ \frac{\text{Alternative Solution (1)}}{\frac{40.85}{90}} = 0.453\ 888\ 89\ \text{kg} = 453.888\ 89\ \text{g} < 455\ \text{g} $	
		The claim is disagreed.	
		$ \frac{\text{Alternative Solution (2)}}{(40.85)(1000)} \\ = 89.7802198 \\ < 90 $	
		The claim is disagreed	

Alternative Solution (3)		
The least possible total weight of 90 air tablets		
$=455 \times 90 \text{ g}$		
$= 40\ 950\ g$		
= 40.95 kg		
= 41.0 kg (cor. to the nearest 0.1 kg)		
≠ 40.8 kg		
The claim is disagreed		
	•	

		Solution	
8.	(a)	A' (5, 1)	<u> </u>
	()	B' (-5, 4)	
	(b)	slope of $A'B = \frac{4-1}{3-5} = -\frac{3}{2}$	
		slope of $AB' = \frac{4 - (-5)}{-5 - 1} = -\frac{3}{2}$ = slope of $A'B$	
		Therefore, $A'B$ parallel to AB' .	
9.	(a)	5 + a = 8 + b + 1 a = b + 4(1)	
		$\frac{10+3a+32+5b+6}{5+3a+32+5b+4} = 3.5$	
		5 + a + 8 + b + 1	
		48 + 3a + 5b = 3.5a + 3.5b + 49 1.5b = 0.5a + 1	
		3b = a + 2 (2)	
		On solving (1) and (2), $a = 7$ and $b = 3$	
	(b)	The probability	
		$=\frac{3+1}{5+7+8+3+1}$	
		$=\frac{1}{6}$	
10.	(a)	Let $C = k_1 V + k_2 V^2$, where k and k are non-zero constants	
		where k_1 and k_2 are non-zero constants ($65 = 50k_1 + 2500k_2$	
		$\begin{cases} 65 = 50k_1 + 2500k_2\\ 135 = 75k_1 + 5625k_2 \end{cases}$	
		$\begin{cases} 97.5 = 75k_1 + 3750k_2 \\ 135 = 75k_1 + 5625k_2 \end{cases}$	
		$37.5 = 1875k_2 \\ k_2 = 0.02$	
		$65 = 50k_1 + 50 k_1 = 0.3$	
		Therefore $C = 0.3V + 0.02V^2$ When $V = 100$	

	$C = 0.3(100) + 0.02(100)^2$ = (\$) 230		
(1	b) $14 = 0.3V + 0.02V^2$ $V^2 + 15V - 700 = 0$ V = 20 or - 35(rej)		
	The monthly consumption is 20 m ³		
	Solution		
11. (;	a) Let $f(x) = (x^2 - x + 3)(ax + b)$ f(-2) = -45 and $f(1) = 219(b - 2a) = -45$ $3(a + b) = 21b - 2a = -5$ $a + b = 7$		
	On solving, $a = 4$ and $b = 3$ The quotient is $4x + 3$		
(1	$f(x) = g(x)$ $(x^{2} - x + 3)(4x + 3) - (4x^{2} + 7x + 3) = 0$ $(x^{2} - x + 3)(4x + 3) - (4x + 3)(x + 1) = 0$ $(4x + 3)(x^{2} - 2x + 2) = 0$ $x = -\frac{3}{4} \text{ or } x^{2} - 2x + 2 = 0$		
	$\Delta \text{ of the equation } x^2 - 2x + 2 = 0$ = (-2) ² - 4(2) = -4 < 0		
	So the quadratic equation $x^2 - 2x + 2 = 0$ does not have real roots. The equation $f(x) = g(x)$ has 1 rational root.		
12. (Let $V \text{ cm}^3$ be the volume of the smaller circular cone.		
12. ($V + \left(\sqrt{\frac{25}{9}}\right)^3 V = (38)(96\pi)$		
	$V = 648\pi$ \therefore Volume of the smaller circular cone is $648\pi \mathrm{cm}^3$.		
	Alternative Solution Volume ratio of the smaller cone to the larger cone = $(\sqrt{9})^3 : (\sqrt{25})^3$ = 27 : 125		
	Volume of the smaller cone = $\frac{27}{27+125} \times (38 \times 96\pi)$		
	$= 648\pi (\mathrm{cm}^3)$		
()	b) Height of the smaller circular cone $=\frac{3 \times 648\pi}{6^2 \pi}$		

(b) Height of the smaller circular cone

$$=\frac{3\times 648\pi}{6^2\pi}$$
$$= 54 \text{ cm}$$

		Curved surface area of the smaller circular cone $= \pi(6)(\sqrt{6^2 + 54^2})$ Curved surface area of the larger circular cone $= (\frac{25}{9})\pi(6)(\sqrt{6^2 + 54^2})$ $\approx 2845 \text{ cm}^2$	
		Solution	
13.	(a)	(30+c) - 18 = 21 c = 9	
	(b)	(40+b) - a < 40 $b < a$	
		$\frac{664 + a + (40 + b)}{25} = 28.6$ $a + b = 11$ $\therefore \begin{cases} a = 6\\ b = 5 \end{cases} \text{ or } \begin{cases} a = 7\\ b = 4 \end{cases}$	
	(c)	Cb = 5 $Cb = 4Original mean = 28.6Case (1) : Original Mode = 39 and New Mode = 42$	
		New mean = $\frac{25 \times 28.6 + 2 \times 42}{27} = \frac{799}{27}$ ≈ 29.6	
		Case (2): Original Mode = 39 and New Mode = 44 New mean $= \frac{25 \times 28.6 + 2 \times 44}{27} = \frac{803}{27}$ ≈ 29.7	

		Solution	
4.	(a)	$\angle AFE = \angle BFD$ (vert. opp. $\angle s$)	
		$\angle AEF = \angle FDB$ ($\angle s$ in the same segment)	
		$\angle EAF = \angle FBD$ ($\angle s$ in the same segment)	
		/ (\angle sum of Δ)	
		$\therefore \Delta BDF \sim \Delta AEF \qquad (AAA)$	
		Marking Scheme	
		Correct proof with correct reasons	
		Correct proof with wrong reasons / without reasons	
	(b)	ΔEDF and ΔECA	
	(c)	$\frac{AE}{FE} = \frac{AC}{FD} \qquad (\text{corr. sides, } \sim \Delta s)$	
		$\frac{5\sqrt{2}}{\sqrt{2}} = \frac{10}{FD}$	
		$\frac{1}{\sqrt{2}} = \frac{1}{FD}$	
		FD = 2	
		$\therefore \angle DEF = \angle BAF = 90^{\circ} \text{ (corr. } \angle s, \neg \Delta s)$	
		$ED = \sqrt{2^2 - \left(\sqrt{2}\right)^2}$	
		$=\sqrt{2}$	
		= FE	
		$\therefore \Delta EDF$ is an isos. triangle.	
		$\therefore \Delta ABF$ is an isos. triangle which $AB = AF$.	
		$AB^2 + (AB + 2)^2 = 10^2$	
		AB = 6	

		Solution	
15.	(a)	The required number = $C_4^{80} - C_4^{48}$ = 1 387 000	
		$\frac{\text{Alternative Solution}}{= C_3^{48} C_1^{32} + C_2^{48} C_2^{32} + C_1^{48} C_3^{32} + C_4^{32}} = 1\ 387\ 000$	
	(b)	The probability of ordering drinks of the same size = $\frac{16}{80} \times \frac{15}{79} + \frac{40}{80} \times \frac{39}{79} + \frac{24}{80} \times \frac{23}{79}$ = $\frac{147}{395}$	
		Alternative Solution (1) The probability of ordering drinks of the same size $= \frac{C_2^{16} + C_2^{40} + C_2^{24}}{C_2^{80}}$ $= \frac{147}{395}$	
		Alternative Solution (2) The probability of ordering drinks of the same size $= 1 - 2 \times \left(\frac{16}{80} \times \frac{40}{79} + \frac{16}{80} \times \frac{24}{79} + \frac{40}{80} \times \frac{24}{79}\right)$ $= 1 - \frac{248}{395}$ $= \frac{147}{395}$	

		Solution	
16.	(a)	Let <i>a</i> and <i>r</i> be the first term and the common ratio of the sequence respectively. So we have $ar^2 = 420$ and $ar^3 = 280$	
		Solving, we have $a = 945$ and $r = \frac{2}{2}$	
		The 1st term is 945.	
	(b)	From (a), $r = \frac{2}{3}$ $\frac{945\left[\left(\frac{2}{3}\right)^n - 1\right]}{\frac{2}{3} - 1} > 2834$	
		$n > \log\left(\frac{2834 \times \left(-\frac{1}{3}\right)}{945} + 1\right) \div \log\left(\frac{2}{3}\right)$ $n > 19.6066124$ $\therefore \text{ least value of } n \text{ is } 20.$	
	(c)	Sum of all terms in the sequence $< \frac{945}{1-\frac{2}{3}}$ = 2835 \therefore It cannot exceed 2835. I don't agree.	
17.	(a)	$f(x) = x^{2} + 2kx + 4k^{2} - 4$ = x ² + 2kx + k ² + 3k ² - 4 = (x + k) ² + 3k ² - 4	
		The vertex is $(-k, 3k^2 - 4)$	
	(b)	$D = (-k + 4, 3k^{2} - 4)$ Since $k > 4$ -k + 4 < 0 $3k^{2} - 4 > 3(4)^{2} - 4$ > 0	
		$E = (3k^2 - 4, k - 4)$	
		Since $\angle EOD = 90^\circ$, if the in-centre lies on the y-axis, <i>D</i> and <i>E</i> is symmetrical about the y-axis $k - 4 = 3k^2 - 4$ $3k^2 - k = 0$ $k = 0 \text{ or } \frac{1}{3}$	
		However, since $k > 4$, therefore, it is impossible.	

(ii) Slope of $DE = \frac{0-8}{-2-6} = 1$ \therefore angle between DE and the x-axis is 45° Slope of $EF = \frac{0-(-7)}{-2-5} = -1$ \therefore angle between EF and the x-axis is 45° Therefore, the equation of I is $y = 0$. (b) (i) Let $G(g, 0)$ be the centre of circle C . $GH \perp DE$ (tangent \perp radius) $\angle GHE = 90^{\circ}$ $\angle GEH = 2HGE = 45^{\circ}$ $EH = HG = \sqrt{(-2-0)^2 + (0-2)^2}$ $= \sqrt{8}$ Coordinates of G are $(2, 0)$ Equation of DF : $\frac{y-8}{6-5} = \frac{8-(-7)}{6-5}$ y = 15x - 82 $x^2 + (15x - 82)^2 - 4x - 4 = 0$ y = 5x - 82 $x^2 + (15x - 82)^2 - 4x - 4 = 0$ $226x^2 - 2464x + 6720 = 0$ A of the equation $226x^2 - 2464x + 6720 = 0$ $= -(-2464)^2 - 4 + 226 \times 6720$ = -3584				Solution	
$\therefore \text{ angle between } \overline{DE} \text{ and the } x\text{-axis is } 45^{\circ}$ Slope of $EF = \frac{0 - (-7)}{-2 - 5} = -1$ $\therefore \text{ angle between } EF \text{ and the } x\text{-axis is } 45^{\circ}$ Therefore, the equation of Γ is $y = 0$. (b) (i) Let $G(g, 0)$ be the centre of circle C . $GH \perp DE$ (tangent \perp radius) $\angle GHE = 90^{\circ}$ $\angle GEH = \angle HGE = 45^{\circ}$ $EH = HG = \sqrt{(-2 - 0)^2 + (0 - 2)^2}$ $= \sqrt{8}$ Coordinates of G are (2, 0) Equation of C is $(x - 2)^2 + y^2 = 8$ or $x^2 + y^2 - 4x - 4 = 0$ (ii) Equation of DF : $\frac{y - 8}{x - 6} = \frac{8 - (-7)}{6 - 5}$ y = 15x - 82 $\begin{cases} x^2 + y^2 - 4x - 4 = 0$ y = 15x - 82 $x^2 + (15x - 82)^2 - 4x - 4 = 0$ $226x^2 - 2464x + 6720 = 0$ A of the equation $226x^2 - 2464x + 6720 = 0$ $= (-2464)^2 - 4 \times 226 \times 6720$ = -3584 < 0	8.	(a)	(i)	Γ is the angle bisector of $\angle DEF$	
$\therefore \text{ angle between } EF \text{ and the } x\text{-axis is } 45^{\circ}$ Therefore, the equation of Γ is $y = 0$. (b) (i) Let $G(g, 0)$ be the centre of circle C . $GH \perp DE$ (tangent \perp radius) $\angle GHE = 90^{\circ}$ $\angle GEH = \angle HGE = 45^{\circ}$ $EH = HG = \sqrt{(-2-0)^{2} + (0-2)^{2}}$ $= \sqrt{8}$ Coordinates of G are $(2, 0)$ Equation of C is $(x-2)^{2} + y^{2} = 8$ or $x^{2} + y^{2} - 4x - 4 = 0$ (ii) Equation of DF : $\frac{y-8}{x-6} = \frac{8-(-7)}{6-5}$ y = 15x - 82 $\begin{cases} x^{2} + y^{2} - 4x - 4 = 0$ y = 15x - 82 $x^{2} + (15x - 82)^{2} - 4x - 4 = 0$ $226x^{2} - 2464x + 6720 = 0$ A of the equation $226x^{2} - 2464x + 6720 = 0$ $= (-2264)^{2} - 4 \times 226 \times 6720$ = -3584 < 0			(ii)		
Therefore, the equation of Γ is $y = 0$. (b) (i) Let $G(g, 0)$ be the centre of circle C . $GH \perp DE$ (tangent \perp radius) $\angle GHE = 90^{\circ}$ $\angle GEH = \angle HGE = 45^{\circ}$ $EH = HG = \sqrt{(-2-0)^{2} + (0-2)^{2}}$ $= \sqrt{8}$ Coordinates of G are (2, 0) Equation of C is $(x-2)^{2} + y^{2} = 8$ or $x^{2} + y^{2} - 4x - 4 = 0$ (ii) Equation of DF : $\frac{y-8}{x-6} = \frac{8-(-7)}{6-5}$ y = 15x - 82 $\begin{cases} x^{2} + y^{2} - 4x - 4 = 0$ y = 15x - 82 $x^{2} + (15x - 82)^{2} - 4x - 4 = 0$ $226x^{2} - 2464x + 6720 = 0$ A of the equation $226x^{2} - 2464x + 6720 = 0$ $= (-2464)^{2} - 4 \times 226 \times 6720$ = -3584 < 0				2 5	
$GH \perp DE \qquad (tangent \perp radius)$ $\angle GHE = 90^{\circ}$ $\angle GEH = \angle HGE = 45^{\circ}$ $EH = HG = \sqrt{(-2-0)^{2} + (0-2)^{2}}$ $= \sqrt{8}$ Coordinates of G are (2, 0) Equation of C is $(x-2)^{2} + y^{2} = 8$ or $x^{2} + y^{2} - 4x - 4 = 0$ (ii) Equation of DF: $\frac{y-8}{x-6} = \frac{8-(-7)}{6-5}$ $y = 15x - 82$ $\begin{cases} x^{2} + y^{2} - 4x - 4 = 0 \\ y = 15x - 82 \end{cases}$ $x^{2} + (15x - 82)^{2} - 4x - 4 = 0$ $226x^{2} - 2464x + 6720 = 0$ $\Delta \text{ of the equation } 226x^{2} - 2464x + 6720 = 0$ $= (-2464)^{2} - 4 \times 226 \times 6720$ $= -3584$ < 0					
$= \sqrt{8}$ Coordinates of <i>G</i> are (2, 0) Equation of <i>C</i> is $(x-2)^2 + y^2 = 8$ or $x^2 + y^2 - 4x - 4 = 0$ (ii) Equation of <i>DF</i> : $\frac{y-8}{x-6} = \frac{8-(-7)}{6-5}$ y = 15x - 82 $\begin{cases} x^2 + y^2 - 4x - 4 = 0 \\ y = 15x - 82 \\ x^2 + (15x - 82)^2 - 4x - 4 = 0 \\ 226x^2 - 2464x + 6720 = 0 \\ 226x^2 - 2464x + 6720 = 0 \end{cases}$ A of the equation $226x^2 - 2464x + 6720 = 0$ $= (-2464)^2 - 4 \times 226 \times 6720 = -3584 \\ < 0$		(b)	(i)	$GH \perp DE \qquad (tangent \perp radius)$ $\angle GHE = 90^{\circ}$	
(ii) Equation of DF : $\frac{y-8}{x-6} = \frac{8-(-7)}{6-5}$ $y = 15x - 82$ $\begin{cases} x^2 + y^2 - 4x - 4 = 0 \\ y = 15x - 82 \end{cases}$ $x^2 + (15x - 82)^2 - 4x - 4 = 0$ $226x^2 - 2464x + 6720 = 0$ $\Delta \text{ of the equation } 226x^2 - 2464x + 6720 = 0$ $= (-2464)^2 - 4 \times 226 \times 6720$ $= -3584$ < 0				$= \sqrt{8}$ Coordinates of <i>G</i> are (2, 0) Equation of <i>C</i> is $(x-2)^2 + y^2 = 8$	
$\begin{cases} y = 15x - 82 \\ x^{2} + (15x - 82)^{2} - 4x - 4 = 0 \\ 226x^{2} - 2464x + 6720 = 0 \end{cases}$ $\Delta \text{ of the equation } 226x^{2} - 2464x + 6720 = 0 \\ = (-2464)^{2} - 4 \times 226 \times 6720 \\ = -3584 \\ < 0 \end{cases}$			(ii)	Equation of <i>DF</i> : $\frac{y-8}{x-6} = \frac{8-(-7)}{6-5}$	
$= (-2464)^2 - 4 \times 226 \times 6720$ = -3584 < 0				$\begin{cases} y = 15x - 82 \\ x^{2} + (15x - 82)^{2} - 4x - 4 = 0 \end{cases}$	
				$= (-2464)^2 - 4 \times 226 \times 6720$ = -3584	
\therefore DF is not tangent to C.				\therefore DF is not tangent to C.	

		Solution	
19.	(a)	$\frac{AC}{\sin(180^\circ - 32^\circ - 68^\circ)} = \frac{24}{\sin 32^\circ}$ $AC = 44.60186234$ $\approx 44.6 \text{ (cm)}$ $\frac{BC}{\sin 100^\circ} = \frac{24}{\sin 42^\circ}$ $BC = 35.32253023$ $\approx 35.3 \text{ cm}$	
	(b)	(i) $\cos \angle ACB = \frac{BC^2 + AC^2 - 30^2}{2(BC)(AC)}$ $\angle ACB = 42.12400765^\circ$ $\approx 42.1^\circ$	
		(ii) D D D D D D D D D D	
		$AP^{2} = AC^{2} + CP^{2} - 2(AC)(CP) \cos \angle ACB$ $AP = 32.18793019$ $\cos \angle AA'P = \frac{AA'^{2} + A'P^{2} - AP^{2}}{2(AA')(A'P)}$ $\angle AA'P = 38.53811011^{\circ}$ $\approx 38.5^{\circ}$	