

Time allowed:	2 hours 15 minutes	Form:	6		
Name:		Class (No.):		()
Teacher: CC / HC	/ JY / MS / MY / SKC / WC				

INSTRUCTIONS

- 1. This paper consists of 26 pages including this cover page. The words "End of Paper" should appear on the last page.
- 2. Do not open this exam paper until instructed to do so.
- 3. This paper consists of **THREE** sections, A(1), A(2) and B. Each section carries 35 marks.
- 4. Attempt **ALL** questions in this paper. Write your answers in the spaces provided in this Question-Answer Book.
- 5. Graph paper and supplementary answer sheets will be supplied on request. Write your name, class and class number on each sheet.
- 6. Unless otherwise specified, all working must be clearly shown.
- 7. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 8. The diagrams in this paper are not necessarily drawn to scale.
- 9. The use of an HKEAA-approved calculator is permitted.

SECTION A(1) (35 marks) 1. Simplify $(x^2y)(-3xy^{-2})^4$ and express your an	swer with positive indices. (3 marks)
$(x^2y)(-3xy^{-2})^4$	
$= \left(x^2 y\right) \left(81 x^4 y^{-8}\right)$	1M for $(a^h)^k = a^{hk}$ or $(ab)^l = a^l b^l$
$= 81x^6y^{-7}$	1M for $c^{p}c^{q} = c^{p+q}$ or $d^{-r} = \frac{1}{d^{r}}$
$=\frac{81x^6}{y^7}$	1A
2. Make x the subject of the formula $\frac{1}{x} + \frac{2}{y} = \frac{3}{z}$.	(3 marks)
$\frac{1}{x} + \frac{2}{y} = \frac{3}{z}$	
$\frac{1}{x} = \frac{3}{z} - \frac{2}{y}$	1M
$\frac{1}{x} = \frac{3y - 2z}{yz}$	1M
$x = \frac{yz}{3y - 2z}$	1A
Alternatively,	
$\frac{1}{x} + \frac{2}{y} = \frac{3}{z}$	
$xyz\left(\frac{1}{x} + \frac{2}{y}\right) = xyz\left(\frac{3}{z}\right)$	1M
yz + 2xz = 3xy $yz = 3xy - 2xz$	
yz = x(3y - 2z)	1M
$x = \frac{yz}{3y - 2z}$	1A

Answers written in the margins will not be marked.

3. Factorize
(a)
$$12x^2 - xy - 6y^2$$
,
(b) $9x + 6y - 12x^2 + xy + 6y^2$.
(3 marks)
(a) $12x^2 - xy - 6y^2$
 $= (3x + 2y)(4x - 3y)$ IA
(b) $9x + 6y - 12x^2 + xy + 6y^2$
 $= 3(3x + 2y) - (3x + 2y)(4x - 3y)$ IM for using (a)
 $= (3x + 2y)(3 - 4x + 3y)$ IA
4. (a) Solve the inequality $\frac{20 - 8x}{3} \le -2(x - 1)$.
(b) Find the number of integers satisfying both inequalities $\frac{20 - 8x}{3} \le -2(x - 1)$ and
 $30 - 3x > 0$.
(4 marks)
(a) $\frac{20 - 8x}{3} \le -2(x - 1)$
 $20 - 8x \le -6x + 6$
 $-8x + 6x \le 6 - 20$ IM for putting x on one side
 $-2x \le -14$
 $x \ge 7$ IA
(b) $30 - 3x > 0$
 $x < 10$ IA
By (a), we have $7 \le x < 10$.
Thus, the required number is 3. IA

Answers written in the margins will not be marked.

5. The marked price of a wallet is 56.25% higher than the cost. The wallet is sold at a discount of 20% on its marked price. After selling the wallet, the profit is \$100. Find the cost of the wallet. (4 marks)

Let c be the cost of the wallet. The marked price of the wallet = \$ (1.5625*c*) The selling price of the wallet = \$ (c + 100) $1.5625c \times (1 - 20\%) = c + 100$ c = 400Thus, the cost of the wallet is \$400.

6. In a park, the ratio of the number of adults to the number of children is 14 : 9. If 2 adults leave the park and 3 children enter the park, then the ratio of the number of adults to the number of children is 4 : 3. Find the original number of children in the park. (4 marks)

Let the original number of adults and children in the park be 14k and 9k respectively, where k is a positive constant. 1A (can be absorbed)

 $\frac{14k-2}{9k+3} = \frac{4}{3}$ 42k - 6 = 36k + 12k = 3Thus, the original number of children in the park is 27.

Alternative solution Let a and c be the original number of adults and children in the park respectively.

 $\begin{cases} \frac{a}{c} = \frac{14}{9} & ---(1) \\ \frac{a-2}{c+3} = \frac{4}{3} & ---(2) \end{cases}$ 1A + 1A(1): $a = \frac{14c}{9} - -- (3)$ Sub (3) into (2), $\frac{\frac{14c}{9} - 2}{c+3} = \frac{4}{3}$ 1M for eliminating one unknown $9\left(\frac{14c}{9}-2\right) = 12(c+3)$ 14c - 18 = 12c + 36c = 271A Thus, the original number of children in the park is 27.

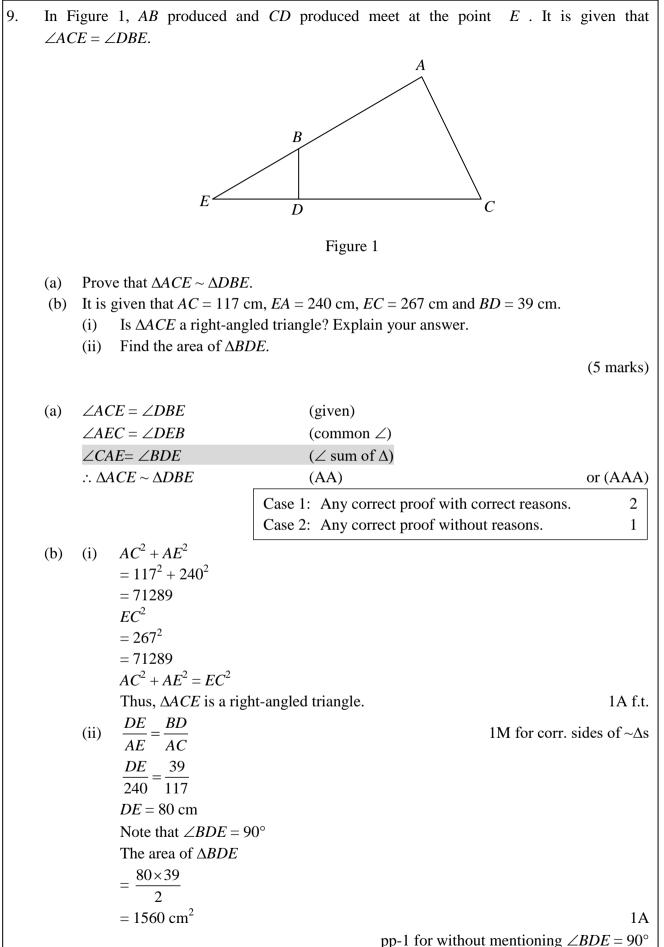
Answers written in the margins will not be marked

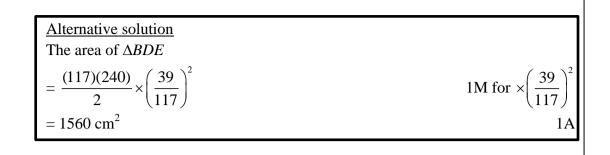
1M

 $1M \text{ for } \cos t + 100$ 1M for marked price \times (1 – 20%)

1M + 1A

1A


7. In a polar coordinate system, O is the pole. The polar coordinates of the points A and B are (6, 35°) and (b, 125°) respectively. It is given that AB = 10. (a) Find *b*. Find the perpendicular distance from *O* to *AB*. (b) (4 marks) $\angle AOB = 125^{\circ} - 35^{\circ}$ (a) = 90° 1A $b^2 + 6^2 = 10^2$ *b* = 8 1A only 1A will be given if students do not obtain $\angle AOB = 90^{\circ}$ Let the perpendicular distance from O to AB be d. (b) 10d 6×8 = 1M2 2


d = 4.8

 \therefore The perpendicular distance from *O* to *AB* is 4.8.

1A

	length of a piece of thin metal wire is measured as 8.2 m correct to the nearest 0.1 m.
(a)	Is it possible that the actual length of this metal wire exceeds 826 cm Explain your answer.
(b)	Is it possible to cut this metal wire into 28 pieces of shorter metal rods, with each length
	measured as 30 cm correct to the nearest cm? Explain your answer.
	(5 marks
(a)	The maximum absolute error $= 0.05$ m.
	The actual length of this metal rod
	< 8.2 + 0.05 1M for $8.2 + 0.0$
	= 8.25 m
	= 825 cm
	< 826 cm
	This, it is not possible that the actual length of this metal rod exceeds 826 cm. 1A f.
	If the <u>actual length</u> of this metal rod <u>exceeds 826 cm</u> , then the <u>measured length</u>
	of this metal rod <u>correct to the nearest 0.1 m</u> will be <u>at least 8.3 m</u> .
	1M for 8.26 m \approx 8.3 m
	This, it is not possible that the actual length of this metal rod exceeds 826 cm. 1A f.
(b)	Let <i>n</i> be the number of pieces of shorter metal rods.
	$n < \frac{825}{30 - 0.5}$ 1M for $\frac{(a)}{30 - 0.5}$ (accept $n \le \frac{826}{30 - 0.5}$
	n < 27.96610169 1A (accept $n < 28$
	Therefore, the greatest possible value of <i>n</i> is 27.
	Thus, it is not possible to cut this metal rod in that way. 1A f.
	The least possible length of 28 pieces of metal rods that are measured as 30 cm
	= (28)(30 - 0.5) 1M for $28(30 - 0.5)$
	= 826 cm 14
	= 8.26 m
	> 8.25 m accept 826 > 82
	Thus, it is not possible to cut this metal rod in that way. 1A f.
	The actual length of each shorter motal rad
	The actual length of each shorter metal rod 825
	$<\frac{825}{28}$ 1M for $\frac{(a)}{28}$
	$\approx 29.46428571 \text{ cm}$ 14
	< 29.5 cm
	Thus, it is not possible to cut this metal rod in that way. 1A f.
	Thus, it is not possible to cut this metal rod in that way. 1A f.

SECTION A(2) (35 marks)

10. The total cost for producing *n* cars is \$*S*, where *n* is a positive integer. *S* is partly constant and partly varies as *n*. When *n* = 2, *S* = 280 000. When *n* = 6, *S* = 600 000.
(a) Find the total cost for producing 20 cars. (4 marks)
(b) Peter claims that the total cost for producing 2*n* cars is less than twice the total cost for producing *n* cars for some positive integer *n*. Do you agree? Explain your answer. (2 marks)

(a)	Let $S = a + bn$, where a and b are non-zero constants.	1A
(u)	When $n = 2$, $S = 280\ 000$, We have	
	$280\ 000 = a + 2b$	→ 1M for either
	When $n = 6$, $S = 600\ 000$. We have	
	$600\ 000 = a + 6b$	
	By solving, we have $a = 120\ 000$ and $b = 80\ 000$.	1A for both
	The total cost for producing 20 cars	
	$= 120\ 000 + 80\ 000(20)$	
	= \$1 720 000	1A
(b)	Total cost for producing $2n$ cars $-2 \times$ total cost for producing <i>n</i> cars	
(-)	$= 120\ 000 + 80\ 000(2n) - 2(120\ 000 + 80\ 000n)$	1M for using (a)
	= -\$120 000	
	< \$0	
	Thus, the claim is agreed.	1A f.t.
	Alternative solution:	
	Total cost for 2 <i>n</i> cars	
	$= 120\ 000 + 80\ 000(2n)$	1M for using (a)
	= \$ (120 000 + 160 000 <i>n</i>)	_
	Total cost for <i>n</i> cars	
	= \$(120 000 + 80 000 <i>n</i>)	
	$2 \times \text{total cost for producing } n \text{ cars}$	
	$= 2 \times (120\ 000 + 80\ 000n)$	
	= \$ (240 000 + 160 000 <i>n</i>)	

1A f.t.

Answers written in the margins will not be marked.

> Total cost for 2*n* cars Thus, the claim is agreed. 11. The following table shows the distribution of the number of mock paper(s) done by a group of students in a certain week.

Number of mock paper(s)	1	2	3	4	5
Number of students	а	20	9	8	2

It is given that the mean of the above distribution is 2.75.

(a) Find *a*.

Answers written in the margins will not be marked.

- (b) Find the median, the inter-quartile range and the standard deviation of the above distribution. (3 marks)
- (c) It is found that the number of mock paper(s) done by one of the students is wrongly recorded. After making the correction, the range of the distribution remains the same. Find the maximum and minimum possible values of the mean after making correction.

(2 marks)

(2 marks)

(a)	$\frac{a+2(20)+3(9)+4(8)+5(2)}{a+20+9+8+2} = 2.75$	1M
	a = 1	1A
(b)	Median = 2	1A
	Interquartile range = $3.5 - 2$	
	= 1.5	1A
	Standard deviation $= 0.968245836$	
	= 0.968	1A (r.t. 0.968)

Mean is maximum when 1 is changed to 6.
 Maximum value of mean = 2.875
 Mean is minimum when 5 is changed to 1.
 Minimum value of mean = 2.65

1A

1A

constant rate of $x\pi$ cm³/s. The container will be full after 64 minutes. Find x. (a) Find the wet surface area of the container when the water has been added to the (b) container for 27 minutes. The capacity of the container (a) $=\frac{1}{3}\pi(48)^2(36)$ $= 27648 \pi \,\mathrm{cm}^3$ $x\pi \times 64 \times 60 = 27648\pi$ x = 7.2The slant height (b) $=\sqrt{48^2+36^2}$ = 60 cmThe area of the lateral face of the container $= \pi(48)(60)$ $= 2880 \pi \,\mathrm{cm}^2$ Water inside the container after 27 minutes $= 7.2\pi \times 27 \times 60$ $= 11664 \pi \,\mathrm{cm}^3$ The area of the wet surface 1M for area ratio $\left(\frac{3}{4}\right)^2$ or length ratio $\frac{3}{4}$ $= (2880\pi) \times \left(\sqrt[3]{\frac{11664\pi}{27648\pi}}\right)^2$ $= 1620 \pi \,\mathrm{cm}^2$

12.

Answers written in the margins will not be marked

A glass container is in a shape of a vertically inverted right circular cone of base radius 48 cm

and height 36 cm. Initially, the container is empty. Suppose the water is being added at a

Answers written in the margins will not be marked.

Page total

1M for πrl

1M for slant height

1A (r.t. 5090 cm²)

1A

(2 marks)

(4 marks)

1M for $\frac{1}{3}\pi r^2 h$

Denote the origin by O. Find OG. (2 marks) (a) Does *O* lie inside *C*? Explain your answer. (b) (1 mark)Let P be a moving point in the rectangular coordinate plane such that OP = GP. Denote (c) the locus of P by Γ . Suppose that Γ cuts C at the points A and B. Find the area of the quadrilateral OAGB. (4 marks) $4x^{2} + 4y^{2} - 40x + 96y - 6549 = 0$ (a) $x^2 + y^2 - 10x + 24y - \frac{6549}{4} = 0$ Coordinates of G $=\left(-\frac{-10}{2},-\frac{24}{2}\right)$ =(5, -12)0G $= \sqrt{(5-0)^2 + (-12-0)^2}$ = 13Radius of C (b) $=\sqrt{\left(\frac{-10}{2}\right)^2 + \left(\frac{24}{2}\right)^2 - \left(-\frac{6549}{4}\right)^2}$ $=\frac{85}{2}$ >13 Thus, O lie inside C. 1A f.t.

The equation of the circle C is $4x^2 + 4y^2 - 40x + 96y - 6549 = 0$. Let G be the centre of C.

13.

Answers written in the margins will not be marked.

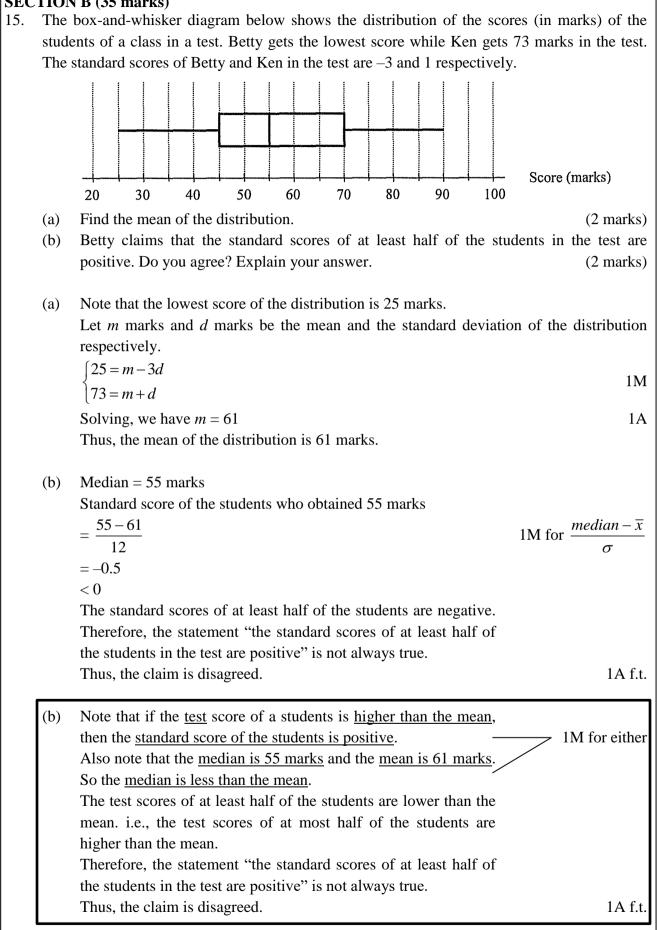
Answers written in the margins will not be marked.

1A

1A

By (b), we have $GA = \frac{85}{2}$. (c) Let *M* be the mid-point of *AB*. Note that Γ is the perpendicular bisector of OG. Since *M* lies on Γ , *M* is the mid-point of *OG*. GM $=\frac{1}{2}OG$ $=\frac{1}{2}(13)$ 1M for using (a) $=\frac{13}{2}$ Also note that $\angle GMB = 90^{\circ}$ MB $=\sqrt{GB^2-GM^2}$ 1M for Pyth. Theorem $=\sqrt{\left(\frac{85}{2}\right)^2 - \left(\frac{13}{2}\right)^2}$ = 42Since both *A* and *B* lie on Γ , we have OA = GA and OB = GB. Further note that GA = GB. So, we have OA = GA = GB = OB. Hence, the quadrilateral OAGB is a rhombus. The area of the quadrilateral OAGB $=4\left(\frac{1}{2}(GM)(MB)\right)$ 1M $= 4\left(\frac{1}{2}\left(\frac{13}{2}\right)(42)\right)$ = 546 1A

Answers written in the margins will not be marked.

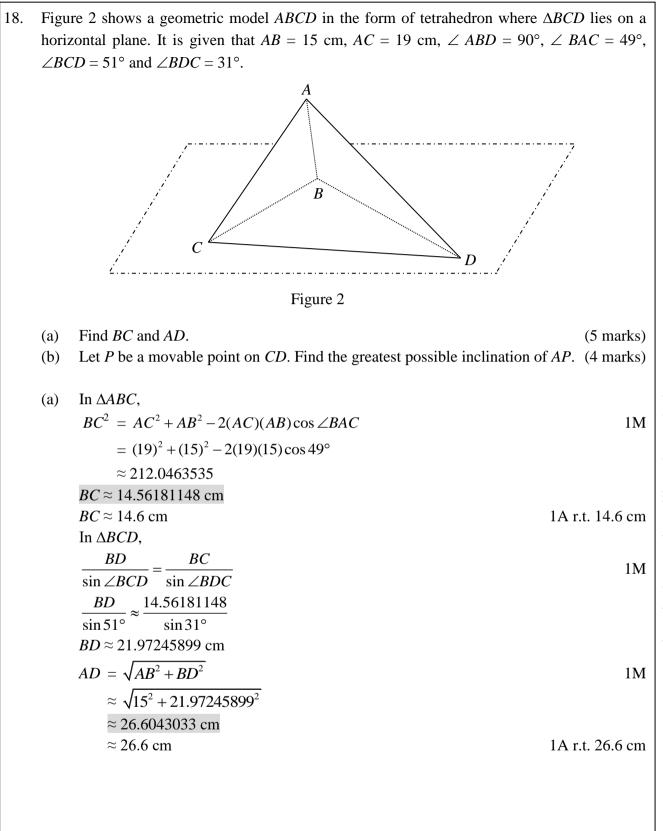

remainder are bx - 3 and cx + d respectively, where a, b, c and d are constants. (a) Find *a* and *b*. (4 marks) Let g(x) be a polynomial with degree greater than 2. When g(x) is divided by (b) $3x^2 + ax - 5$, the remainder is cx + d. Prove that f(x) - g(x) is divisible by $3x^2 + ax - 5$. (i) Edan claims that all the roots of the equation f(x) - g(x) = 0 are rational. Do you (ii) agree? Explain your answer. (5 marks) Note that $f(x) = (3x^2 + ax - 5)(bx - 3) + cx + d$ (a) 1MHence, we have $f(x) = 3bx^3 + (ab-9)x^2 + (-3a-5b+c)x+15+d$. Also note that $f(x) = 6x^3 - 11x^2 - 15x - 37$. By considering the coefficient of x^3 , we have 3b = 61M for either b=21A By considering the coefficient of x^2 , we have 2a - 9 = -11a = -11A Let $g(x) = Q(x)(3x^2 + ax - 5) + cx + d$, where Q(x) is a polynomial. (b) (i) f(x) - g(x) $= (3x^{2} + ax - 5)(bx - 3) + cx + d - \left[Q(x)(3x^{2} + ax - 5) + cx + d\right]$ $= (3x^{2} + ax - 5)(bx - 3) - Q(x)(3x^{2} + ax - 5)$ 1M for eliminating cx + d $= (3x^{2} + ax - 5)(bx - 3 - Q(x))$ Thus, f(x) - g(x) is divisible by $3x^2 + ax + 5$. (ii) f(x) - g(x) = 0 $(3x^2 - x - 5)(2x - 3 - Q(x)) = 0$ 1M for using (a) and (b)(i) $3x^2 - x - 5 = 0$ or 2x - 3 - Q(x) = 0For $3x^2 - x - 5 = 0$, $x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-5)}}{2(3)}$ 1M $=\frac{1\pm\sqrt{61}}{6}$ Note that $\frac{1+\sqrt{61}}{6}$ and $\frac{1-\sqrt{61}}{6}$ are roots of the above equation. So, not all the roots of the equation f(x) - g(x) = 0 are rational. Thus, the claim is disagreed. 1A f.t. Answers written in the margins will not be marked.

Let $f(x) = 6x^3 - 11x^2 - 15x - 37$. When f(x) is divided by $3x^2 + ax - 5$, the quotient and the

14.

SECTION B (35 marks)

Answers written in the margins will not be marked


Remark for Q15b:

When the number of students is odd, then there exist at least one student who has a result of the median (55 marks). For this case, less than 50% of the students have results greater than the median.

(a) How many different committee can be formed? (2 marks) (b) What is the probability that the committee formed only have boys? (2 marks) (b) What is the probability that the committee formed have members of both genders? (2 marks) (a) The required number $= C_5^{16} \qquad 1M$ $= 4368 \qquad 1A$ (b) The required probability $= \frac{C_i^2}{C_5^{16}} \qquad 1M \text{ for } \frac{C_i^2}{(a)}$ $= \frac{1}{208} \qquad 1A$ (c) The required probability $= 1 - \frac{1}{208} - \frac{C_i^2}{C_5^{16}} \qquad 1M \text{ for } 1 - (b) - \frac{C_s^2}{(a)}$ $= \frac{201}{208} \qquad 1A$ $The required probability = \frac{C_i^2 C_2^a + C_3^2 C_2^a + C_4^2 C_1^6}{C_5^{16}} \qquad 1M \text{ for } 1 - (b) - \frac{C_s^2}{(a)}$	16.		re are 7 boys and 9 girls in a class. 5 students are randomly selected fr mmittee.		
(b) What is the probability that the committee formed have members of both genders? (2 marks) (a) The required number $= C_{5}^{16}$ 1M = 4368 1A (b) The required probability $= \frac{C_{5}^{7}}{C_{5}^{16}}$ 1M for $\frac{C_{5}^{7}}{(a)}$ $= \frac{1}{208}$ 1A (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ 1M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ 1A The required probability $= \frac{201}{208}$ 1M $= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}}$ 1M $= \frac{201}{208}$ 1A		(a)	How many different committee can be formed?	(2 mar	rks)
(a) The required number $= C_{5}^{16} \qquad 1M$ $= 4368 \qquad 1A$ (b) The required probability $= \frac{C_{5}^{7}}{C_{5}^{16}} \qquad 1M \text{ for } \frac{C_{5}^{7}}{(a)}$ $= \frac{1}{208} \qquad 1A$ (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}} \qquad 1M \text{ for } 1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208} \qquad 1A$ $\begin{bmatrix} \text{The required probability} \\ = \frac{201}{208} \qquad 1A \end{bmatrix}$ $\begin{bmatrix} \text{The required probability} \\ = \frac{C_{1}^{7}C_{9}^{9} + C_{3}^{7}C_{9}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}} \qquad 1M \\ = \frac{201}{208} \qquad 1A \end{bmatrix}$		(b)	What is the probability that the committee formed only have boys?	(2 mar	rks)
(a) The required number $= C_{5}^{16} \qquad IM$ $= 4368 \qquad IA$ (b) The required probability $= \frac{C_{5}^{7}}{C_{5}^{6}} \qquad IM \text{ for } \frac{C_{5}^{7}}{(a)}$ $= \frac{1}{208} \qquad IA$ (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}} \qquad IM \text{ for } 1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208} \qquad IA$ $\begin{bmatrix} \text{The required probability} \\ = \frac{201}{208} & IA \\ \end{bmatrix}$ $\begin{bmatrix} \text{The required probability} \\ = \frac{C_{1}^{7}C_{9}^{4} + C_{2}^{7}C_{9}^{4} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}} \\ C_{5}^{16} & IM \\ \end{bmatrix}$		(b)	What is the probability that the committee formed have members of	f both genders?	
$= C_{5}^{16}$ IM = 4368 IA (b) The required probability $= \frac{C_{5}^{7}}{C_{5}^{16}}$ IM for $\frac{C_{5}^{7}}{(a)}$ $= \frac{1}{208}$ IA (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ IM for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ IA The required probability $= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{3}^{9} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}}$ IM $= \frac{201}{208}$ IM IA IA IA IA IA IA IA IA IA IA				(2 mar	rks)
$= C_{5}^{16}$ IM = 4368 IA (b) The required probability $= \frac{C_{5}^{7}}{C_{5}^{16}}$ IM for $\frac{C_{5}^{7}}{(a)}$ $= \frac{1}{208}$ IA (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ IM for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ IA The required probability $= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{3}^{9} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}}$ IM $= \frac{201}{208}$ IM IA IA IA IA IA IA IA IA IA IA		(a)	The required number		
= 4368 1A (b) The required probability $= \frac{C_5^7}{C_5^{16}} $ 1M for $\frac{C_5^7}{(a)}$ $= \frac{1}{208} $ 1A (c) The required probability $= 1 - \frac{1}{208} - \frac{C_5^9}{C_5^{16}} $ 1M for $1 - (b) - \frac{C_5^9}{(a)}$ $= \frac{201}{208} $ 1A $\begin{bmatrix} The required probability \\ = \frac{C_1^7 C_9^9 + C_2^7 C_9^9 + C_4^7 C_1^9}{C_5^{16}} \\ = \frac{201}{208} \end{bmatrix}$ 1M			-		1M
(b) The required probability $= \frac{C_{5}^{7}}{C_{5}^{16}} \qquad IM \text{ for } \frac{C_{5}^{7}}{(a)}$ $= \frac{1}{208} \qquad IA$ (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}} \qquad IM \text{ for } 1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208} \qquad IA$ $\boxed{\text{The required probability}}$ $= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{3}^{9} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}} \qquad IM$			-		
$= \frac{C_{5}^{7}}{C_{5}^{16}}$ $= \frac{1}{208}$ (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ $= \frac{201}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ $= \frac{201}{208}$ (M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ (M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ (M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ (M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ (M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ (M for $1 - \frac{C_{5}^{9}}{(b)}$ (M for $1 - \frac{C_{5}^{9}}$		(b)			
$= \frac{1}{208}$ (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ $= \frac{201}{208}$ 1M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ 1A The required probability $= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{3}^{9} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}}$ 1M $= \frac{201}{208}$ 1A		(0)			C^7
$= \frac{1}{208}$ (c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ $= \frac{201}{208}$ 1M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ $= \frac{201}{208}$ 1A The required probability $= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{3}^{9} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}}$ 1M $= \frac{201}{208}$ 1A			$=\frac{C_5}{C^{16}}$	1M for -	$\frac{C_5}{()}$
(c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ $= \frac{201}{208}$ 1M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ 1A The required probability $= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{3}^{9} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}}$ 1M $= \frac{201}{208}$ 1M					(a)
(c) The required probability $= 1 - \frac{1}{208} - \frac{C_{5}^{9}}{C_{5}^{16}}$ $= \frac{201}{208}$ 1M for $1 - (b) - \frac{C_{5}^{9}}{(a)}$ 1A The required probability $= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{3}^{9} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}}$ 1M $= \frac{201}{208}$ 1M			$=\frac{1}{200}$		1A
$= 1 - \frac{1}{208} - \frac{C_5^9}{C_5^{16}}$ $= \frac{201}{208}$ 1M for $1 - (b) - \frac{C_5^9}{(a)}$ 1A $= \frac{201}{208}$ 1A $= \frac{C_1^7 C_4^9 + C_2^7 C_3^9 + C_3^7 C_2^9 + C_4^7 C_1^9}{C_5^{16}}$ 1M $= \frac{201}{208}$ 1A					
The required probability $= \frac{C_1^7 C_4^9 + C_2^7 C_3^9 + C_3^7 C_2^9 + C_4^7 C_1^9}{C_5^{16}}$ 1M $= \frac{201}{208}$ 1A		(c)			0
The required probability $= \frac{C_1^7 C_4^9 + C_2^7 C_3^9 + C_3^7 C_2^9 + C_4^7 C_1^9}{C_5^{16}}$ 1M $= \frac{201}{208}$ 1A			$=1-\frac{1}{C_{5}}-\frac{C_{5}}{C_{5}}$	1M for $1 - (b)$	C_5^9
The required probability $= \frac{C_1^7 C_4^9 + C_2^7 C_3^9 + C_3^7 C_2^9 + C_4^7 C_1^9}{C_5^{16}}$ 1M $= \frac{201}{208}$ 1A			208 C_5^{10}		(a)
The required probability $= \frac{C_1^7 C_4^9 + C_2^7 C_3^9 + C_3^7 C_2^9 + C_4^7 C_1^9}{C_5^{16}}$ 1M $= \frac{201}{208}$ 1A			_ 201		1 Δ
The required probability $= \frac{C_1^7 C_4^9 + C_2^7 C_3^9 + C_3^7 C_2^9 + C_4^7 C_1^9}{C_5^{16}}$ 1M $= \frac{201}{208}$ 1A			208		17.1
$= \frac{C_{1}^{7}C_{4}^{9} + C_{2}^{7}C_{3}^{9} + C_{3}^{7}C_{2}^{9} + C_{4}^{7}C_{1}^{9}}{C_{5}^{16}} \qquad 1M$ $= \frac{201}{208} \qquad 1A$			The required probability		
$= \frac{c_{1}c_{4}+c_{2}c_{3}+c_{3}c_{2}+c_{4}c_{1}}{C_{5}^{16}}$ $= \frac{201}{208}$ 1M					
$=\frac{201}{208}$ 1A			$=\frac{C_1 C_4 + C_2 C_3 + C_3 C_2 + C_4 C_1}{C^{16}}$		1M
$=\frac{201}{208}$ 1A					
					1A
			208		

_			_
	Let a	α and β be real numbers such that $\begin{cases} \beta = 3\alpha - 4 \\ \beta = \alpha^2 - 5\alpha + 12 \end{cases}$.	
	(a) (b)	Find α and β . (2 marks) The 1st term and the 2nd term of an arithmetic sequence are log α and log β respectively. Find the least value of <i>n</i> such that the sum of the first <i>n</i> terms of the sequence is greater than 2022. (4 marks)	
	(a)	Putting $\beta = 3\alpha - 4$ in $\beta = \alpha^2 - 5\alpha + 12$, we have $3\alpha - 4 = \alpha^2 - 5\alpha + 12$ 1M $\alpha^2 - 8\alpha + 16 = 0$ Solving, we have $\alpha = 4$ and $\beta = 8$. 1A for both	
	(b)	Let T(n) be the <i>n</i> th term of the arithmetic sequence. T(1) = log4 = log2 ² = 2 log2 IM for either T(2) = log8 = log2 ³ = 3 log2 IM for either The common difference of the sequence is log2. T(1) + T(2) + T(3) + + T(n) > 2022 2 log2 + 3 log2 + 4 log2 + + (n + 1) log2 > 2022 $\frac{n}{2}(2\log 2 + (n+1)\log 2) > 2022$ IM for $sum = \frac{(a+l)n}{2}$ (log 2)n ² + (3log 2)n - 4044 > 0 n < -117.4143098 or n > 114.4143098 IM Thus, the least value of n is 115. IM	

17.

Answers written in the margins will not be marked

2122_MA_S6_MOCK_EXAM_MS_P1 P. 19 of 26

(b)
$$\ln \Delta BCD$$
,

$$\frac{CD}{\sin \angle CBD} = \frac{BC}{\sin \angle BDC}$$

$$\frac{CD}{\sin \angle CBD} = \frac{14.56181148}{\sin 31^{\circ}}$$

$$CD \approx 27.99811826 \text{ cm}$$

$$\ln \Delta ACD$$
,

$$\cos \angle ACD = \frac{AC^{2} + CD^{2} - AD^{2}}{2(AC)(CD)}$$

$$\cos \angle ACD \approx \frac{19^{2} + 27.99811826^{2} - 27.15265252^{2}}{2(19)(27.99811826)}$$

$$\angle ACD \approx 65.74231062^{\circ}$$

$$\ln \Delta ABC$$
,

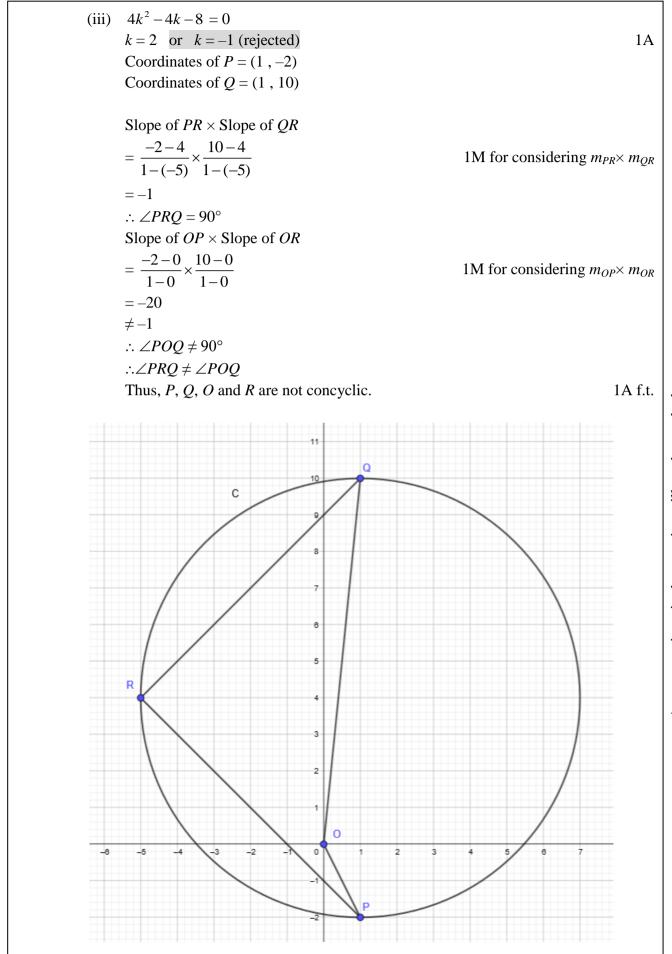
$$\cos \angle ACB = \frac{AC^{2} + BC^{2} - AB^{2}}{2(AC)(AB)}$$

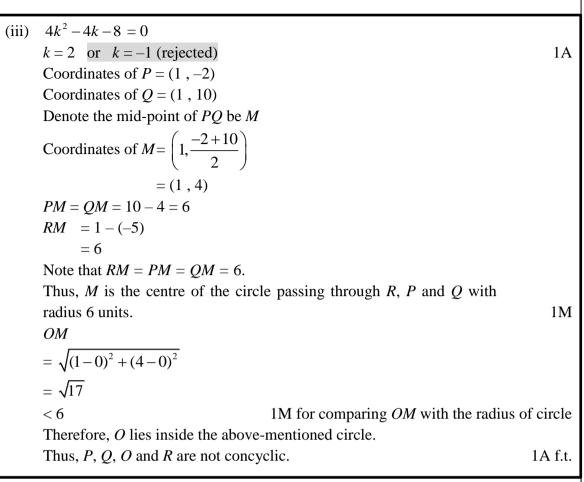
$$\cos \angle ACB \approx \frac{19^{2} + 14.56181148^{2} - 15^{2}}{2(19)(14.56181148)}$$

$$\angle ACB \approx 51.02495766^{\circ}$$
Let *Q* be the foot of perpendicular from *A* to *CD*.
Let *R* be a point on *BC* where $RQ \perp CD$.
The greatest possible inclination of AP will be obtained when *P* is at *Q*.
i.e.: The greatest possible inclination of $AP = \angle AQR$
IM for identifying the maximum size of the inclination
In ΔACQ ,
 $AQ = AC \sin \angle ACQ$
 $\approx 19 \cos 65.74231062^{\circ}$
 $\approx 17.32243138 \text{ cm}$
 $CQ = AC \cos \angle ACQ$
 $\approx 19 \cos 65.74231062^{\circ}$
 $\approx 7.805983026 \text{ cm}$
In ΔCQR ,
 $QR = CQ \tan \angle RCQ$
 $\approx 7.805983026 \text{ cm}$
In ΔCQR ,
 $QR = CQ \tan \angle RCQ$
 $\approx 7.805983026 \text{ cm}$
In ΔCR ,
 $CR = \frac{CQ}{\cos \angle RCQ}$
 $\approx \frac{7.805983026}{\cos 51^{\circ}}$
 $\approx 12.40382981 \text{ cm}$
 $CR = \frac{CQ}{\cos \angle RCQ}$
 $\approx \frac{7.805983026}{\cos 51^{\circ}}$
 $\approx 12.40382981 \text{ cm}$
IM for either AQ , QR or AR
 $\approx \frac{7.805983026}{\cos 51^{\circ}}$
 $\approx 12.40382981 \text{ cm}$
 ACR ,
 $AR^{2} = AC^{2} + CR^{2} - 2(AC)(CR) \cos \angle ACR$

$\approx 19^2 + 12.40382981^2 - 2(19)(12.40382981)\cos 51.02495766^{\circ}$	
≈ 218.3872268	
$AR \approx 14.7779304 \text{ cm}$	
In ΔAQR ,	
$\cos \angle AQR = \frac{AQ^2 + QR^2 - AR^2}{2(AQ)(QR)}$	
2(AQ)(QR)	
$\cos \angle AQR \approx \frac{(17.32243138)^2 + (9.639586243)^2 - (14.7779304)^2}{2(17.32243138)(9.639586243)}$	
2(17.32243138)(9.639586243)	
$\angle AQR \approx 58.47861145^{\circ}$	
The greatest possible inclination of AP is 58.5°	1A r.t. 58.5°

- Using the method of completing the square, express the coordinates of *P* in terms of *k*. (a)
 - (2 marks)
- (b) The graph of y = g(x) is obtained by reflecting the graph of y = f(x) in x-axis and then translating the resulting graphs upwards by 8 units. Let Q be the vertex of the graph of y = g(x). Denote the origin by *O*.
 - (i) Write down, in terms of k, the coordinates of Q.
 - Is it possible that the circumcentre of $\triangle OPQ$ lies on the x-axis? Explain your (ii) answer.
 - (iii) The coordinates of the point R are (-5, 4). It is given that the graph of y = f(x)passes through O. Are P, Q, O and R concyclic? Explain your answer.


(8 marks)


(a)
$$f(x) = 2x^2 - 4(k-1)x + 4k^2 - 4k - 8$$

 $= 2[x^2 - 2(k-1)x] + 4k^2 - 4k + 8$
 $= 2[x^2 - 2(k-1)x + (k-1)^2 - (k-1)^2] + 4k^2 - 4k - 8$ IM
 $= 2(x - (k-1))^2 + 2k^2 - 10$
 The coordinates of *P* are $(k-1, 2k^2 - 10)$ IA
 (b) (i) Coordinates of $Q = (k-1, -(2k^2 - 10) + 8)$
 $= (k-1, 18 - 2k^2)$ IA
 (ii) Note that the *x*-coordinate of *P* = *x*-coordinate of *Q*.
 PQ is a vertical line.
 So, the perpendicular bisector of *PQ* is a horizontal line.
 The *y*-coordinate of the circumcentre of ΔOPQ
 $(2k^2 - 10) + (18 - 2k^2)$

$$=\frac{(2k^2-10) + (18-2k^2)}{2}$$

= 4
\$\neq 0\$
Therefore, the circumcentre of \$\Delta OPO\$ does not lie on the x-axis.

Thus, it is not possible.

Answers written in the margins will not be marked.

 $4k^2 - 4k - 8 = 0$ (iii) k = 2 or k = -1 (rejected) 1A Coordinates of P = (1, -2)Coordinates of Q = (1, 10)Let $x^2 + y^2 + Dx + Ey + F = 0$ be the equation of the circle passing through P, Q and O. Sub (0, 0), we have F = 0. Sub (1, -2), we have 1+4+D-2E=01M for either Sub (1, 10), we have 1+100+D+10E=0By solving, we have D = -21, E = -8The equation of the circle is $x^2 + y^2 - 21x - 8y = 0$ Sub (-5, 4) into $x^2 + y^2 - 21x - 8y = 0$, L.H.S. = $(-5)^2 + 4^2 - 21(-5) - 8(4)$ 1**M** = 114 $\neq 0$ \therefore The circle which passes through P, Q and O does not pass through the point R. Thus, P, Q, O and R are not concyclic. 1A f.t.

(iii)
$$4k^2 - 4k - 8 = 0$$

 $k = 2$ or $k = -1$ (rejected) 1A
Coordinates of $P = (1, -2)$
Coordinates of $Q = (1, 10)$
 $OR = \sqrt{(-5-0)^2 + (4-0)^2} = \sqrt{41}$
 $OP = \sqrt{(1-0)^2 + (-2-0)^2} = \sqrt{5}$
 $RP = \sqrt{(-5-1)^2 + (4-(-2))^2} = 6\sqrt{2}$
 $OQ = \sqrt{(1-0)^2 + (10-0)^2} = \sqrt{101}$
 $RQ = \sqrt{(-5-1)^2 + (4-10)^2} = 6\sqrt{2}$
 $\cos \angle RQO = \frac{(6\sqrt{2})^2 + (\sqrt{101})^2 - (\sqrt{41})^2}{2(6\sqrt{2})(\sqrt{101})}$ 1M for either
 $\angle RQO \approx 39.28940686^{\circ}$
 $\cos \angle RPO = \frac{(6\sqrt{2})^2 + (\sqrt{5})^2 - (\sqrt{41})^2}{2(6\sqrt{2})(\sqrt{5})}$
 $\angle RPO \approx 18.43494882^{\circ}$
 $\angle RQO + \angle RPO$
 $\approx 18.43494882^{\circ} + 39.28940686^{\circ}$
 $\approx 57.72435569^{\circ}$
 $\neq 180^{\circ}$
Also note that $\angle RQO \neq \angle RPO$.
 \therefore The circle which passes through P , Q and O does not pass through the point R .
Thus, P , Q , O and R are not concyclic. 1A f.t.

END OF PAPER

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.

1A