Set 1 - Full Solution

Paper 2

1.	D	10. B	19. B	28. D	37. C
2.	В	11. B	20. D	29. B	38. D
3.	C	12. D	21. A	30. B	39. C
4.	C	13. A	22. D	31. B	40. D
5.	В	14. C	23. B	32. A	41. B
6.	Α	15. C	24. C	33. A	42. B
7.	C	16. B	25. B	34. B	43. B
8.	В	17. C	26. D	35. D	44. C
9.	C	18. C	27. A	36. D	45. D

1. D
$$\frac{(3y^2)^4}{9y} = \frac{3^4y^{2v4}}{3^2y} = 3^{4-2}y^{8-1} = 3^2y^7 = 9y^7$$

2. B
$$4a = \frac{1}{5}(2c - 3ab)$$

$$20a = 2c - 3ab$$

$$3ab + 20a = 2c$$

$$a(3b + 20) = 2c$$

$$a = \frac{2c}{3b + 20}$$

3. C

$$ad - ae - bd + be + cd - ce$$

 $= ad - bd + cd - ae + be - ce$
 $= d(a - b + c) - e(a - b + c)$
 $= (a - b + c)(d - e)$

4. C Method 1 $2(x^2 + 2a) = (x + 3)(2x + b) + 6$ $2x^2 + 4a = 2x^2 + 6x + bx + 3b + 6$ $2x^2 + 4a = 2x^2 + (6 + b)x + (3b + 6)$ Comparing the coefficients of like terms, 0 = 6 + b b = -6 4a = 3(-6) + 6a = -3

Method 2 When x = -3, $2[(-3)^2 + 2a] = 6$ a = -3

5. B
f(x) is divisible by
$$x - 1$$
.
 $f(1) = 1 + k^2 - 6k + 8 = 0$
 $k^2 - 6k + 9 = 0$
 $k = 3$
 $f(x) = x^5 + 9x^3 - 18x + 8$
 $f(-2) = -60$

7. C

$$(x-2s-2)^2 = 9(s+1)^2$$

 $x-2s-2 = 3(s+1)$ or $x-2s-2 = -3(s+1)$
 $x = 5s+5$ or $x = -s-1$

The price of one notebook = $\$\left(x + \frac{9}{16}x\right) = \$\left(\frac{25}{16}x\right)$

9. C

$$2x-7>3x+2$$

 $-x>9$
 $x<-9$
 $-3x+5>-4$
 $-3x>-9$
 $x<3$
 \therefore Combining, $x<3$.

The price of one notebook is
$$\frac{25}{16} \frac{x - x}{x} \times 100\% = 56.25\%$$
 higher than the price of one pen.

- 15 -

11. B
The amount
=
$$7000 \times \left(1 + \frac{0.09}{4}\right)^4$$

= \$7651.583232
The interest
= \$7651.583232 - \$7000
= \$651.583232
= \$652

12. D

$$(j+k): (i+k)$$

 $= \left(3i + \frac{6i}{8}\right): \left(i + \frac{6i}{8}\right)$
 $= \frac{15}{4}i : \frac{7}{4}i$
 $= 15 : 7$

13. A The actual area of the reservoir = 188×20000^2 = 7.52×10^{10} cm² = 7.52×10^6 m² = 7.52 km²

C
 The nth pattern has 1 + 3 + 5 + ... + (2n - 1) dots.
 The number of dots in the 11th pattern = 1 + 3 + 5 + ... + 21 = 121

Let $z = k_1 x^2 + \frac{k_2}{y^3}$, where k_1 and k_2 are non-zero constants. $\begin{cases}
-62 = k_1(2)^2 + \frac{k_2}{1^3} \\
24 = k_1(8)^2 + \frac{k_2}{2^3}
\end{cases}$ Solving, we have $k_1 = \frac{1}{2}$, $k_2 = -64$. $\therefore \frac{1}{2}(2)^2 - \frac{64}{(-6)^3} = 3$

16. B

 16350/84 = 194.64 mL

 ∴ The minimum volume of orange juice = 194.64 mL

17. C

Let O be the centre of the circle ABCD; and M be the mid-point of AB. $OM \perp AB$ $\sin \angle AOM = \frac{AM}{AO} = \frac{3}{4}$ $\angle AOB = 2\angle AOM = 2\sin^{-1}\frac{3}{4}$ $OM^2 = OA^2 - AM^2 = 4^2 - 3^2$ $OM = \sqrt{7}$ The area of $\triangle OAB = \frac{1}{2}AB \times OM = \frac{1}{2}(6)(\sqrt{7}) = 3\sqrt{7}$ The area of the sector $OAB = \pi(4)^2 \frac{2\sin^{-1}\frac{3}{4}}{360^\circ} \approx 13.5690$ OD = OC = 4 = CD

Jointus

Let N be the mid-point of CD. $ON \perp CD$ $ON^2 = OD^2 - DN^2 = 4^2 - 2^2$ $ON = 2\sqrt{3}$

The area of $\triangle OCD = \frac{1}{2}CD \times ON = \frac{1}{2}(4)(2\sqrt{3}) = 4\sqrt{3}$

The area of the sector $OCD = \pi(4)^2 \frac{60^\circ}{360^\circ} = \frac{8}{3}\pi$

The area of the shaded region = Area of the sicricle – Area of the sector OAB + Area of $\triangle OAB$ – Area of the sector OCD + Area of $\triangle OCD$ = $\pi(4)^2 - 13.5690 + 3\sqrt{7} - \frac{8}{3}\pi + 4\sqrt{3}$ = 43.2 cm² (corr. to 3 sig. fig.)

Method 2

Let O be the centre of the circle ABCD.

In $\triangle OAB$, by cosine formula, $\cos \angle AOB = \frac{OA^2 + OB^2 - AB^2}{2(OA)(OB)} = \frac{4^2 + 4^2 - 6^2}{2(4)(4)} = \frac{-1}{8}$

The area of $\triangle OAB = \frac{1}{2}(OA)(OB) \sin \angle AOB = \frac{1}{2}(4)(4) \sin \left(\cos^{-1}\frac{-1}{8}\right) \approx 7.93725$

The area of the sector $OAB = \pi(4)^2 \frac{\cos^{-1} \frac{-1}{8}}{360^\circ} = 13.5690$

OD = OC = 4 = CD $\therefore \angle COD = 60^{\circ}$

The area of $\triangle OCD = \frac{1}{2}(OC)(OD)\sin \angle COD = \frac{1}{2}(4)(4)\sin 60^\circ = 4\sqrt{3}$

The area of the sector $OCD = \pi(4)^2 \frac{60^\circ}{360^\circ} = \frac{8}{3}\pi$

The area of the shaded region = Area of the sector OAB + Area of $\triangle OAB$ - Area of the sector OCD + Area of $\triangle OCD$ = $\pi(4)^2 - 13.5690 + 7.93725 - \frac{8}{3}\pi + 4\sqrt{3}$ = 43.2 cm² (corr. to 3 sig. fig.)

8. C Method 1

Method 1 Produce BE and AD to meet at F. Since $BC \parallel AF$, $\Delta BCE \sim \Delta FDE$ (AAA). BE: FE = BC: FD = CE: DE = 3:1 (corr. sides, $\sim \Delta s$) As BE: EF = 3:1, Area of $\Delta ABE:$ Area of $\Delta AEF = 3:1$. The area of $\Delta AEF = 2$ cm² As BC: FD = 3:1, and BC: AD = 2:1, AD: DF = 3:2. Area of $\Delta ADE:$ Area of $\Delta FDE = 3:2$ Area of $\Delta ADE = 2$ cm²

∴ The area of $\triangle ADE = 2 \times \frac{3}{2+3} = 1.2 \text{ cm}^2$ The area of $\triangle FDE = 2 - 1.2 = 0.8 \text{ cm}^2$ Since $\triangle BCE \sim \triangle FDE$ with side ratio 3:1, Area of $\triangle BCE$: Area of $\triangle FDE = 3^2$: $1^2 = 9:1$. The area of $\triangle BCE = 9(0.8) = 7.2 \text{ cm}^2$ The area of the trapezium $ABCD = 6 + 1.2 + 7.2 = 14.4 \text{ cm}^2$

∴ ∠COD = 60°

Method 2

Produce BA and CD to meet at G. Since BC // AD, \(\Delta BCG \sim \DADG \) (AAA). CG:DG=BG:AG=BC:AD=2:1 (corr. sides, $\sim \Delta s$) AB = AG and CD = DGArea of $\triangle AEG = \text{Area of } \triangle ABE = 6 \text{ cm}^2$ Since CD = DG and CE : DE = 3 : 1, GD:DE:EC=4:1:3, CG:EG=8:5.Area of $\triangle GBC$: Area of $\triangle BEG = 8:5$

The area of $\triangle GBC = (6+6) \times \frac{8}{5} = 19.2 \text{ cm}^2$

Since $\triangle BCG \sim \triangle ADG$ with side ratio 2:1, Area of $\triangle BCG$: Area of $\triangle ADG = 2^2$: $1^2 = 4$: 1.

The area of $\triangle ADG = 19.2 \times \frac{1}{4} = 4.8 \text{ cm}^2$

The area of trapezium $ABCD = 19.2 - 4.8 = 14.4 \text{ cm}^2$

Let h be the height of the cone.

$$4\pi r^2 = \pi r \sqrt{r^2 + h^2}$$

$$4r = \sqrt{r^2 + h^2}$$

$$16r^2 = r^2 + h^2$$

$$h^2 = 15r^2$$

$$h = \sqrt{15}r$$

 $\therefore \text{ The volume of the cone} = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 (\sqrt{15}r) = \frac{\sqrt{15}}{3}\pi r^3$

20. D

 $\tan(180^{\circ} - \theta) = -\tan\theta$

 $\therefore \tan \theta + \tan(180^\circ - \theta) = \tan \theta - \tan \theta = 0$

 $\sin x > 0$ for $0^{\circ} < x < 180^{\circ}$.

 $\sin \theta > 0$

Since $60^{\circ} < (150^{\circ} - \theta) < 150^{\circ}$.

 $\therefore \sin(150^{\circ} - \theta) > 0$ $\sin \theta$

 $\frac{\sin \theta}{\sin(150^\circ - \theta)} > 0$ III. 🗸

 $\cos x < 0$ for $90^{\circ} < x < 270^{\circ}$.

Since $120^{\circ} < (\theta + 120^{\circ}) < 210^{\circ}$,

 $\cos(\theta + 120^{\circ}) < 0$

 $\cos x > 0$ for $-90^{\circ} < x < 90^{\circ}$.

Since $-90^{\circ} < (\theta - 90^{\circ}) < 0^{\circ}$

 $\therefore \cos(\theta - 90^{\circ}) > 0$

 $\cos(\theta + 120^{\circ}) - \cos(\theta - 90^{\circ}) < 0$

 $\angle BAD = \angle BDA = 47^{\circ}$ (base \angle s, isos. Δ) $\angle DAC = \angle BDA - \angle DCA \text{ (ext. } \angle \text{of } \Delta \text{)}$ $=47^{\circ}-26^{\circ}$ = 21° $\angle ABE = \angle BAC$ (alt. $\angle s$, $EB \parallel AC$) = 47° + 21° = 68°

22. D

21. A

The sum of the interior angles = $180^{\circ} \times (5-2) = 540^{\circ}$

II. The sum of the exterior angles of a polygon is 360°.

Ш. ✓

23. OB = OC

 $\angle BAC = 18^{\circ} (\angle \text{ at centre twice } \angle \text{ at circumference})$

 $\angle BCA = 2 \times \angle BAC = 36^{\circ}$ (arcs prop. to \angle s at circumference)

:. ZOCA = 72° - 36° = 36°

24. C

12 pentagons have $12 \times 5 = 60$ sides.

20 hexagons have $20 \times 6 = 120$ sides.

Each edge is the side of two faces, so there are $\frac{60+120}{2} = 90$ edges.

By Euler's formula, V + F - E = 2.

V = 2 - 32 + 90 = 60

.. The polyhedron has 90 edges and 60 vertices.

25. B

The coordinates of B are (6, 7).

The coordinates of the reflection image of B with respect to the y-axis are (-6, 7).

- 19 -

26. D

The slope of $L_1 = \tan 135^\circ = -1$

The equation of L_1 is

 $y = -x + 5 \dots (1)$ The equation of L_2 is

 $\frac{x}{-3} + \frac{y}{1} = 1$

 $y = \frac{x}{3} + 1$ (2)

Solving, we have x = 3 and y = 2.

 $y = \log x$

(1,0)

27. A

The coordinates of the centre are (-h, -k).

$$-h>0$$

$$-k < 0$$

The x-coordinate of the centre < r

$$-h < r$$

The y-coordinate of the centre
$$< -r$$

28. D

Since the range is 10, $4 \le p \le 14$ and $4 \le q \le 14$.

Since the median is 7, one is smaller than or equal to 7 and another is greater than or equal to 7.

- 20 -

Since
$$p < q$$
, $4 \le p \le 7$.
p can be equal to 4.

Since p < q, $4 \le p \le 7$ and $7 \le q \le 14$.

If mean = 7.8 and q = 7, then p = 7. It is impossible.

29. B

× 40 is the median, the mean cannot be determined from the diagram.

- × The inter-quartile range is 20 lessons/15 hours. II.
- III. 🗸 54 hours is longer than the duration of 70 lessons.
- 30. B

The standard deviation = 1.40248 = 1.40

31. B

$$m^2 - 16 = (m+4)(m-4)$$

$$m^2 + 8m + 16 = (m + 4)^2$$

$$m^3 - 64 = (m - 4)(m^2 + 4m + 16)$$

:. The L.C.M. =
$$(m+4)^2(m-4)(m^2+4m+16)$$

32. A

Method 1

Since the graph is downward sloping, 0 < a < 1.

Put
$$x = 1$$
. $y = \log_{\sigma}(1) + b = b$

Note that when $x > \frac{1}{2}$, y < 0.

∴ b < 0

Method 2

$$y = \log_a x + b = \frac{\log x}{\log a} + b$$

Consider the graph of $y = \log x$ in the figure.

Since the graphs are in opposite direction, $\frac{1}{\log a}$ is negative.

 $\therefore \log a$ is negative, so 0 < a < 1.

Consider the graph of $y = \frac{\log x}{\log a}$ in the figure.

For y = 0, x = 1. So it still passes through the point (1, 0).

However, for $y = \frac{\log x}{\log a} + b$, it passes through the point $\left(\frac{1}{2}, 0\right)$,

so the graph is shifted downwards.

$$= 2^{10} + 2^6 + 2^5 + 2 + 1$$
$$= 2^{10} + 99$$

Method 1

$$\alpha + \beta = -6$$
 and $\alpha\beta = 12$

$$\alpha^4 + \beta^4$$

$$=\alpha^4+2\alpha^2\beta^2+\beta^4-2\alpha^2$$

$$= \alpha^4 + 2\alpha^2\beta^2 + \beta^4 - 2\alpha^2\beta^2$$
$$= (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$$

$$=(\alpha^2+2\alpha\beta+\beta^2-2\alpha\beta)^2-2\alpha^2\beta^2$$

$$= [(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2(\alpha\beta)^2$$

= [(-6)^2 - 2(12)]^2 - 2(12)^2

$$\alpha + \beta = -6$$

$$x^2 + 6x + 12 = 0$$

$$\alpha^2 = -6\alpha - 12$$
 and $\beta^2 = -6\beta - 12$

$$\alpha^4 = (-6\alpha - 12)^2 = 36(\alpha^2 + 4\alpha + 4) = 36(-6\alpha - 12 + 4\alpha + 4) = 36(-2\alpha - 8) = -72(\alpha + 4)$$

Similarly,
$$\beta^4 = -72(\beta + 4)$$
.

$$\therefore \alpha^4 + \beta^4 = [-72(\alpha+4)] + [-72(\beta+4)] = -72(\alpha+\beta+8) = -72(-6+8) = -144$$

35. D

$$\frac{2i-\alpha}{3i-1}$$

$$= \frac{2i - \alpha}{3i - 1} \times \frac{-3i - 1}{-3i - 1}$$

$$=\frac{6-2i+3\alpha i+\alpha}{}$$

$$=\frac{6+\alpha}{10}+\frac{3\alpha-2}{10}i$$

Jointus

36. D
$$f(x) = g(x) \\
-x^{2} + bx + c = mx + c \\
x^{2} + (m - b)x = 0$$
Let α and β be the roots of the equation $x^{2} + (m - b)x = 0$.

$$\alpha + \beta = -(m - b) = b - m \\
\alpha\beta = 0$$
The distance between A and B

$$= \sqrt{(\alpha - \beta)^{2} + [(m\alpha + c) - (m\beta + c)]^{2}}$$

$$= \sqrt{(\alpha - \beta)^{2} + m^{2}(\alpha - \beta)^{2}}$$

$$= \sqrt{(1 + m^{2})(\alpha - \beta)^{2}}$$

$$= \sqrt{(1 + m^{2})(b - m)^{2}}$$

$$= (m - b)\sqrt{1 + m^{2}} \text{ or } -(m - b)\sqrt{1 + m^{2}} \text{ (rejected)}$$

38. D

The *n*th term

= Sum of the first *n*th terms – Sum of the first
$$(n-1)$$
th terms

= $2n(n-9) - 2(n-1)(n-1-9)$

= $2(n^2-9n) - 2(n^2-1)(n-1-9)$

= $4n-20$

1. \times
 $4n-20 < 0$
 $n < 5$

∴ Only the first 4 terms are negative.

Sum of all negative terms = $2(4)(4-9) = -40$

II. \checkmark

The 2nd term = $4(2) - 20 = -12$

The 9th term = $4(9) - 20 = 16$
 $16 - (-12) = 28$

III. \checkmark

The *n*th term = $4n-20 = 4(n-5)$

Since *n* is an integer, $n-5$ is also an integer.

∴ All terms are divisible by 4.

39. C
The graph is sinusoidal.
Let the equation be
$$y = a\sin(hx^{\circ} + k) + b$$
.
Since the amplitude is 2, $a = 2$.
The range of y is from -3 to 1, where the range of $y = 2\sin(x^{\circ})$ is from -2 to 2.
Thus, the graph is shifted downwards by 1 unit.
 $b = -1$
When $x = 0$ or $x = 1440$, $y = 0$.
 $0 = 2\sin(k) - 1$
 $\sin k = 0.5$
From the choices, $k = 30^{\circ}$.
 $0 = 2\sin(1440h^{\circ} + 30^{\circ}) - 1$
 $\sin(1440h^{\circ} + 30^{\circ}) = 0.5$
 $1440h^{\circ} + 30^{\circ} = 30^{\circ}$ or 150° or 390° or 510° or 750° or ...
 $1440h^{\circ} = 0^{\circ}$ or 120° or 360° or 480° or 720° or ...
 $h = 0$ (rejected) or $\frac{1}{12}$ or $\frac{1}{4}$ or $\frac{1}{3}$ or $\frac{1}{2}$ or ...

Since there are three x-intercepts within $0 < x \le 1440$, the third root of h should be chosen.

$$\therefore h = \frac{1}{3}$$

Thus, the graph can represent the equation $y = 2\sin\left(\frac{x^{\circ}}{2} + 30^{\circ}\right) - 1$.

40. D

I.
$$\checkmark$$

BCDE is a square.

BD = $\sqrt{1^2 + 1^2} = \sqrt{2}$ cm

 $\triangle ABC$ is equilateral.

Let M be a point on AC such that BM \perp AC.

BM = BC sin 60° = $\frac{\sqrt{3}}{2}$ cm

By symmetry, DM = $\frac{\sqrt{3}}{2}$ cm.

The angle between the plane ABC and the plane ADC = $\angle BMD = \cos^{-1}\left(-\frac{1}{3}\right)$ п. 🗸

II.
$$\checkmark$$
The surface area of the octahedron = $8 \times \text{Area}$ of $\triangle ABC$
= $8 \left[\frac{1}{2} (1)(1) \sin 60^{\circ} \right]$
= $2\sqrt{3} \text{ cm}^{2}$

III. ✓

By symmetry,
$$AF = BD = \sqrt{2}$$
 cm.

Let P be the intersection point of AF and the plane BCDE.

By symmetry, $AP \perp$ the plane BCDE and $AP = \frac{1}{2}AF = \frac{\sqrt{2}}{2}$ cm.

By symmetry, the pyramid ABCDE and the pyramid FBCDE are congruent.

The volume of the octahedron = 2 × Volume of pyramid ABCDE

$$= 2 \times \left(\frac{1}{3} \times 1^2 \times \frac{\sqrt{2}}{2}\right)$$
$$= \frac{\sqrt{2}}{2} \text{ cm}^3$$

41. B

 $\angle FGH = 180^{\circ} - 86^{\circ} = 94^{\circ}$ (opp. $\angle s$, cyclic quad.) AE = DE and BG = CG (tangent properties)

$$\angle ADE = \frac{180^{\circ} - 86^{\circ}}{2} = 47^{\circ}$$

$$\angle BCG = \frac{180^{\circ} - 94^{\circ}}{2} = 43^{\circ}$$

$$\angle ACD = 47^{\circ}$$
 and $\angle BDC = 43^{\circ}$ (\angle in alt. segment)
 $\angle AID = \angle ACD + \angle BDC = 47^{\circ} + 43^{\circ} = 90^{\circ}$ (ext. \angle of \triangle)

 $\angle AID = \angle ACD + \angle BDC = 47^{\circ} + 43^{\circ} = 90^{\circ} \text{ (ext. } \angle \text{ of } \Delta)$

42. B

A Put
$$y = 4x + 3$$
 into $x^2 + y^2 + x + 4y - 2 = 0$,
 $x^2 + (4x + 3)^2 + x + 4(4x + 3) - 2 = 0$

$$17x^2 + 41x + 19 = 0$$

$$\Delta = (41)^2 - 4(17)(19) = 389 > 0$$

.. The straight line and the circle intersect at two distinct points.

Put y = 4x + 3 into $x^2 + y^2 - 4x + y + 2 = 0$,

$$x^{2} + (4x + 3)^{2} - 4x + (4x + 3) + 2 = 0$$

$$17x^2 + 24x + 14 = 0$$

$$\Delta = (24)^2 - 4(17)(14) = -376 < 0$$

.. The straight line and the circle do not intersect.

Put
$$y = 4x + 3$$
 into $x^2 + y^2 + 3x + 4y - 3 = 0$,

$$x^{2} + (4x + 3)^{2} + 3x + 4(4x + 3) - 3 = 0$$

$$17x^2 + 43x + 18 = 0$$

$$\Delta = (43)^2 - 4(17)(18) = 625 > 0$$

.. The straight line and the circle intersect at two distinct points.

Put
$$y = 4x + 3$$
 into $x^2 + y^2 + 4x - 7y + 12 = 0$,

$$x^{2} + (4x + 3)^{2} + 4x - 7(4x + 3) + 12 = 0$$

$$17x^2 = 0$$

$$\Delta = (0)^2 - 4(17)(0) = 0$$

.. The straight line and the circle intersect at one point only.

- 24 -

43. B

The number of committees

$$=C_5^{16+12}-C_5^{12}-C_5^{13}$$

Let x be John's score, z be John's standard score, μ be the mean and σ be the standard deviation.

$$z = \frac{x - \mu}{x}$$

$$\frac{196 - 136}{54} < z < \frac{200 - 119}{54}$$

By observation:

$$2a + 2 = 2(a + 7) - 12$$

$$4b - 12 = 2(2b) - 12$$

$$2c-22=2(c-5)-12$$

$$8 = 2(10) - 12$$

Each of the original data is multiplied by 2 and then 12 is subtracted from it.

Therefore, the variance is multiplied by $2^2 = 4$.

The required variance = 4(18) = 72