Set 1 – Marking Scheme Paper 1

	Solution	Marks	Remarks
.	$ \frac{x^{2}y^{5})^{-1}}{16x^{2}y^{4}} $ $ \frac{2^{-1}x^{2}y^{-5}}{16x^{2}y^{4}} $ $ \frac{1}{32x^{3-2}y^{4+5}} $ $ \frac{1}{32xy^{9}} $	IM IM IA	for $(ab)^m = a^m b^m$ or $(a^m)^n = a^m$ $for \frac{c^p}{c^q} = c^{p-q} \text{ or } \frac{c^p}{c^q} = \frac{1}{c^{q-p}}$
(1 (1 (1	$ -p)(1-q) = p -q) - p(1-q) = p -q) = p(1-q) + p -q) = p(2-q) = \frac{q-1}{q-2} $	1A 1M	for putting p on one side $p = \frac{1-q}{2-q}$
	$45p^{2} - 125q^{2}$ $= 5[(3p)^{2} - (5q)^{2}]$ $= 5(3p - 5q)(3p + 5q)$ $45p^{2} - 125q^{2} - 12p - 20q$ $= 5(3p - 5q)(3p + 5q) - 4(3p + 5q)$ $= (3p + 5q)[5(3p - 5q) - 4]$ $= (3p + 5q)(15p - 25q - 4)$	1A 1M 1A 3	or equivalent for using result in (a) or equivalent
4. (a)	= 3000(1 + 60%) = \$4800 Marked price of phone I = 2500(1 + 100%) = \$5000 Profit of phone A = 4800(1 - 15%) - 3000 = \$1080	IA IA IM	either one
	Profit of phone I = 5000(1 - 15%) - 2500 = \$1750 Thus, phone I has a higher profit.	1A 4	ft.

10	in	tus
100		US

	Solution	Marks	Remarks
and $\begin{cases} \frac{x}{1.5} \end{cases}$	x m be the walking distance from Town A to Town B y m be the walking distance from Town B to Town C. $\frac{y}{0.9} = 75 \times 60$ $y = 5000$	1A+1A	
Sub	In the second equation, $y = 5000 - x$. stituting into the first equation, $+ \frac{5000 - x}{0.9} = 4500$	IM	for eliminating one unknown
0.9x -0.3 x = 1	$x + 1.2(5000 - x) = 4500 \times 0.9 \times 1.2$ 4x + 6000 = 4860 4x + 6000 = 4860	1A	
x 1.2	x m be the walking distance from Town A to Town B. $+\frac{5000-x}{0.9} = 75 \times 60$ 3800	1M + 1A + 1A	$\begin{cases} 1A \text{ for } y = 5000 - x \\ + 1M \text{ for } \frac{x}{1.2} + \frac{y}{0.9} \end{cases}$
The	walking distance from Town A to Town B is 3800 m.	4	
5. (a)	$\frac{-32-x}{3} < -x - 2$		
	-32 - x < -3x - 6 x < 13 $4x - 24 \ge 0$	1A	
	$x \ge 6$ Thus, the required solution is $6 \le x < 13$.	1A 1A	
(b)	The multiples of 3 which satisfy both the inequalities in (a) are 6, 9 and 12. Thus, the required number is 3.	IA	
	11	4	
3.5	$\theta = 135^{\circ} \text{ or } \theta = 315^{\circ}$	1A	for both correct
(b)	$AB = \sqrt{OA^2 + OB^2}$ (Pyth. theorem) = $\sqrt{6^2 + 8^2}$ = 10	1M	
	Let r be the perpendicular distance from O to AB. $\frac{1}{2}(10)(r) = \frac{1}{2}(8)(6)$	1M	
	r = 4.8 The perpendicular distance from O to AB is 4.8 .	1A	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4	
		1	loint

		Solution	Marks	Remarks
8.	(a)	AD = CD and $BD = CD$ (given)		
		AD = BD		
		$\angle DAB = \angle DBA \text{ (base } \angle s, \text{ isos. } \Delta)$	1M	for both
		$\angle DBC = \angle DCB$ (base $\angle s$, isos. Δ)	200.00	- Tor both
		$\angle DAB + \angle DBA + \angle DBC + \angle DCB = 180^{\circ} (\angle \text{ sum of } \Delta)$	1M	
		2∠DBA + 2∠DBC = 180° ∠DBA + ∠DBC = 90°		
		$\angle ABC = 90^{\circ}$		
		Thus, the claim is agreed.	1A	f.t.
		AD = CD and $BD = CD$ (given)	-	
		AD = BD = CD		
		AC is the diameter of the circle passing through		
		A, B and C.	1M	
		∠ABC = 90° (∠ in semi-circle)	1M	
		Thus, the claim is agreed.	lA	f.t.
	(b)	$\angle CAB = 180^{\circ} - 90^{\circ} - 30^{\circ} (\angle \text{ sum of } \Delta)$		
		$= 60^{\circ}$ $\angle DBA = \angle CAB \text{ (base } \angle s, \text{ isos. } \Delta)$		
		$\angle DBA = \angle CAB$ (base $\angle s$, isos. \triangle) = 60°		
		$\angle ADB = 180^{\circ} - 60^{\circ} - 60^{\circ} (\angle \text{ sum of } \Delta)$		1
		= 60°		1
		ΔABD is equilateral.		
		AB = AD = DC	1M	
		sin ∠ACB		
		= <u>AB</u>		1
		$-\frac{1}{AC}$		l)
		$=\frac{AD}{2AD}$		l
		- 2AD		
		_1	IA	f.t.
		= <u>2</u>	IA	1.1.
			5	
_				
į.	(a)	The median = 26 marks	IA	
		The range = 30 - 14 = 16 marks	1A	1
		The inter-quartile range = $30 - 15 = 15$ marks	1A	
	(b)	The third quartile is the average of the 25th highest		
		score and the 26th highest score.		
		Since it is equal to the full score, 30 marks, both of		
		them should be 30 marks.	lM	1
		The top 26 students, who originally have 30 marks,		
		face a mark deduction and the scores of other		
		students remain unchanged. Thus, it is impossible for all the students		
		to pass the test after the rechecking.	1A	f.t.
		(6)		
			5	
_				
		Set		
				1.1
CI	E-MAT	H-CP 1-4 Set I Marking Scheme -4-		Jointus
OI.				

	Solution	Marks	Remarks
). (a)	By remainder theorem, f(k) = k $2k^3 - 5k^2 - k + 4k = k$ $2k^3 - 5k^2 + 2k = 0$ k(2k-1)(k-2) = 0	1M	
	$k = 0$ or $k = \frac{1}{2}$ or $k = 2$	1A	for all correct $k=0$ or $k=0.5$ or $k=2$
(b)	Take $k = 2$. By definition, $x - 2$ is a factor of $f(x) - 2$. By long division, $f(x) - 2 = 2x^2 - 5x^2 - x + 6$ = (x - 2)(2x - 3)(x + 1) f(x) = 2 f(x) - 2 = 0	1M	
	(x-2)(2x-3)(x+1) = 0 $x=2 \text{ or } x = \frac{3}{2} \text{ or } x = -1$	1A	for all correct $x = 2$ or $x = 1.5$ or $x = -1$
	Take $k = 2$. $f(x) - 2 = 2x^3 - 5x^2 - x + 6$ $f(2) - 2 = 2(2)^3 - 5(2)^2 - 2 + 6 = 0$ So $x - 2$ is a factor of $f(x) - 2$. f(x) = 2 f(x) - 2 = 0	IM	for substitution
	(x-2)(2x-3)(x+1) = 0 $x=2 \text{ or } x = \frac{3}{2} \text{ or } x = -1$	1A	for all correct $x = 2$ or $x = 1.5$ or $x = -1$
(c)	Take $k = \frac{1}{2}$. By long division, $g(x) = 2x^2 - 4x - 3$ Let $2x^2 - 4x - 3 = 4$. Then $2x^3 - 4x - 7 = 0$. $\Delta = (-4)^2 - 4(2)(-7) = 72 > 0$	IA	
	The graph of $y = g(x)$ intersects the line $y = 4$ at two distinct points. Thus, the claim is agreed.	1A 6	ft

_		Solution	Marks	Remarks
11.	(a)	Let $C = k_1 n + k_2 \sqrt{n}$, where k_1 and k_2 are non-zero constants.	IA	
		$\int 34.5 = k_1(25) + k_2 \sqrt{25}$		**************************************
		$144 = k_1(100) + k_2\sqrt{100}$	1M	for substitution
		Solving, we have $k_1 = 1.5$ and $k_2 = -0.6$. The printing cost of a 50-page document = $1.5(50) - 0.6\sqrt{50}$	1A	for both correct
		≈ \$70.75735931 ≈ \$70.8	1A	r.t. \$70.8
	(b)	$1.45n = 1.5n - 0.6\sqrt{n}$		
		$1.45 = 1.5 - \frac{0.6}{\sqrt{n}}$	1M	
		$\sqrt{n} = 12$ n = 144 Thus, the number of pages in the document is 144.	1A	
		Thus, the hamber of pages in the document is 144.		
			6	
	2286	[(80+c)-(40+a)=39		
12.	(a)	$(40+a)+(40+b)+(80+c)+1076=20\times62.5$	1 M	for setting simultaneous equations
		$\int a - 1 = c$		
		a+b+c=14		
		2a + b = 15 (1)		
		From the stem-and-leaf diagram, $a \le b \le 5 \dots (2)$	IM	
		From (1) and (2),		
		3 <i>b</i> ≥ 15 <i>b</i> ≥ 5		
		The only possible value for b is 5.		
		Thus, the only possible solution for a , b and c is	80	1 21 (22
		a = 5, $b = 5$ and $c = 4$.	1A	for all correct
	(b)	The median = 61 words per minute	IA	
		The mode = 45 words per minute	IA	
	(c)	The median.	1A	,
		It is because the mode is at the lowest end of the distribution, while the median is at		
		the centre of the distribution.	1A	,
		OR The mode is far away from the centre of the		
		distribution, while the median is close to		either one
		the centre of the distribution.		
		OR Any other suitable reason.		
			7	

		Solution	Marks	Remarks
3.	(a)	Let h cm be the height of the circular frustum. By similar triangles,		
		$\frac{x-h}{x} = \frac{\frac{8}{2}}{\frac{16}{2}}$	IM	
		$x = \frac{16}{2}$	••••	
		$h = \frac{x}{2}$	1A	or equivalent
		Thus, the height is $\frac{x}{2}$ cm.		
	(b)	Volume of the cylinder		
		$=\pi\left(\frac{8}{2}\right)^2\left(20-\frac{x}{2}\right)$	IM	
		$=(320\pi - 8\pi x) \text{ cm}^3$	1A	or equivalent
	(c)	Capacity of the container		
		$=\frac{1}{3}\pi\left(\frac{16}{2}\right)^{2}(x)-\frac{1}{3}\pi\left(\frac{8}{2}\right)^{2}\left(x-\frac{x}{2}\right)+(320\pi-8\pi x)$	IM	
		$= \left(\frac{32}{3}\pi x + 320\pi\right) \text{cm}^3$	1A	or equivalent
		$\frac{32}{3}\pi x + 320\pi \ge 2000$		
		$x \ge \frac{375}{2\pi} - 30$	1A	
		$And \frac{x}{2} < 20$ $x < 40$		
		$\frac{375}{2\pi} - 30 \le x < 40$	1A	
		2π		
		Capacity of the container		
		$= \frac{1}{3}\pi \left(\frac{16}{2}\right)^2 (x) \left[1 - \left(\frac{8}{16}\right)^3\right] + (320\pi - 8\pi x)$	1M	
		$=\left(\frac{32}{3}\pi x + 320\pi\right) \text{cm}^3$	1A	or equivalent
		$\frac{32}{3}\pi x + 320\pi \ge 2000$		
		$x \ge \frac{375}{2\pi} - 30$	1A	
			IA	
		And $\frac{x}{2} < 20$		
		$x < 40$ $\frac{375}{2\pi} - 30 \le x < 40$	1A	
		2π	IA	
			8	

		Solution	Marks	Remarks
4.	(a)	(i) The coordinates of B are $(0, -5)$.	1A	2
		(ii) The coordinates of M are $\left(\frac{p}{2}, \frac{q-5}{2}\right)$.	1 A	
	(b)	The slope of $AM = \frac{5 - \frac{q - 5}{2}}{0 - \frac{p}{2}} = \frac{q - 15}{p}$	IA	
		The slope of $OC = \frac{q}{p}$	IA	
	(c)	Slope of $AM \times$ Slope of $OC = -1$ $\frac{q-15}{p} \times \frac{q}{p} = -1$ $q^2 - 15q = -p^2$	1 M	
		$q^{2} - 15q = -p^{2}$ $p^{2} + q^{2} - 15q = 0$ The equation of the locus of C is $x^{2} + y^{2} - 15y = 0$ $x^{2} + \left(y - \frac{15}{2}\right)^{2} = \left(\frac{15}{2}\right)^{2}$	IA	
		Thus, the locus of C is a circle with centre $\left(0, \frac{15}{2}\right)$		(0, 7.5) , 7.5
		and radius $\frac{15}{2}$, excluding the points (0, 0) and (0, 15)	1A+1A	1A for correct centre and radiu 1A for excluding the two point
			8	TA for excluding the two point
				a l
		4		
	ă			
)#1		

Solution	Marks	Remarks
15. $\log_a y - 3 = 3(\log_a x + 1)$ $\log_a y = 3\log_a x + 6$	1M	for setting up equation
$\log_a y = 3 \frac{\log_a x}{\log_a a^2} + 6$	1M	for changing base
$\log_a y = 3 \frac{\log_a x}{2} + 6$		
$\log_a y = \log_a x^{\frac{3}{2}} + \log_a a^6$		
$\log_a y = \log_a a^6 x^{\frac{1}{2}}$	1M	
$y=a^6x^{\frac{1}{2}}$	1A	
	4	
16. (a) The required probability		
$=\frac{C_2^4 C_2^4}{C_4^{12}}$	1M	
$=\frac{56}{165}$	IA.	r.t. 0.339
The required probability $= \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10} \times \frac{7}{9} \times C_2^4$	ım	
$= \frac{56}{12}$		- 0220
= 165	1A	r.t. 0.339
(b) The required probability C ⁴ ₁ C ⁴ ₂ C ⁴ ₃		
$=\frac{\frac{C_1^4 C_0^4 C_2^4}{C_1^{12}}}{\frac{56}{165}}$	IM	for numerator
$=\frac{3}{14}$	1A	r.t. 0.214
The required probability		
$=\frac{\frac{4}{12}\times\frac{3}{11}\times\frac{4}{10}\times\frac{3}{9}\times C_2^4}{56}$	1M	for numerator
$=\frac{3}{14}$	IA	r.t. 0.214
The required probability	(+	
$=\frac{4}{8}\times\frac{3}{7}$	1M	
$=\frac{3}{14}$	1A	r.t. 0.214
	4	
DSE-MATH-CP 1-9 Set 1 Marking Schem	-9-	Jointus

Solution	Marks	Remarks
(a) $\Delta = (-8)^2 - 4(25)$ = -36		
< 0 Thus, (*) has no real roots.	1A	f.t.
(b) (i) $x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(25)}}{2}$		
x = 4 + 3i or $x = 4 - 3i$	1A	
$\frac{\alpha}{\alpha - \beta}$		
$=\frac{4+3i}{(4+3i)-(4-3i)}$		
$=\frac{4+3i}{6i}$		
$=\frac{1}{2}+\frac{2}{3i}$		
$=\frac{1}{2}-\frac{2}{3}i$		1
$\frac{\beta}{\beta-\alpha}$		
$=\frac{4-3i}{(4-3i)-(4+3i)}$		for both correct
$=\frac{4-3i}{-6i}$		
$=\frac{1}{2} - \frac{2}{3i}$		
$-\frac{2}{2} \cdot 3i$ $= \frac{1}{2} + \frac{2}{3}i$	1A	
2.3	"	
(ii) Sum of roots $= \left(\frac{1}{2} + \frac{2}{3}i\right) + \left(\frac{1}{2} - \frac{2}{3}i\right)$	1 M	
= 1 Product of roots		
$= \left(\frac{1}{2} - \frac{2}{3}i\right) \left(\frac{1}{2} + \frac{2}{3}i\right)$	IM	
$=\left(\frac{1}{2}\right)^2 - \left(\frac{2}{3}i\right)^2$		
$=\frac{25}{36}$		
36 The required quadratic equation is		
$x^2 - x + \frac{25}{36} = 0.$	1A	or equivalent
	6	
<u>a</u> ri		

		Solution	Marks	Remarks
(a)	AC-	$= \sqrt{AB^2 + BC^2}$		
(-)		50 cm		
	sin 2	$\angle BAC = \frac{3}{5}$ and $\cos \angle BAC = \frac{4}{5}$		
	0.000	50		
	AM:	= 2		
		= 25 cm		
	AM	-= cos ∠BAC		
	2114			
	AN-	$=\frac{125}{4}$ cm		
	Aut -	4 (11)		
	RN -	$=40-\frac{125}{4}$		
	Div	4		
		$=\frac{35}{4}$ cm	1A	8.75 cm
		77/		-thomasana I
	BR	= sin ∠BAC		
	****	Notice is	200	
	BR =	= 24 cm	1 A	
(b)	(i)	CM = CM (common side)		
(0)	(1)	AC = BC (given)		
		AM = BM (prop. of rectangle)		
		$\Delta ACM \equiv \Delta BCM (SSS)$		
		$\angle ACR = \angle BCR \text{ (corr. } \angle s, \cong \Delta s)$	1M	
		CR = CR (common side)		
		AC = BC (given)	100100	
		$\triangle ACR \cong \triangle BCR \text{ (SAS)}$	1M	
		So $AR = BR = 24$ cm (corr. sides, $\cong \Delta s$). Since $\triangle AMC$ is a vertical plane, $AR \perp RB$.		
		$AB = \sqrt{24^2 + 24^2}$		
		= 24√2 cm		
		By cosine formula,		
		$\cos \angle ANB = \frac{AN^2 + BN^2 - AB^2}{2 \times AN \times BN}$		
		$(\frac{125}{125})^2 + (\frac{35}{35})^2 - (24\sqrt{2})^2$		
		$\cos \angle ANB = \frac{4}{4} \frac{4}{4}$	1M	
		$\cos \angle ANB = \frac{\left(\frac{125}{4}\right)^2 + \left(\frac{35}{4}\right)^2 - (24\sqrt{2})^2}{2 \times \frac{125}{4} \times \frac{35}{4}}$		
		4 4	1114	100°
		ZANB = 100.4163610° = 100°	IA	r.t. 100°
	(ii)	$AR^2 = AM^2 + MR^2 - 2(AM)(MR)\cos \angle AMC$	1M	
	- A	When ∠AMC decreases from 90° to 0°,		
		cos ∠AMC increases and AR decreases.		
		$\tan \angle ABR = \frac{AR}{BR}$		
		tan ∠ABR decreases when AR decreases.	2418	
		Thus, $\angle ABR$ decreases when $\angle AMC$ decreases.	1A	f.t.
			- 8	
				1

,
,
,
absorbed
m of geometric sequenc
ing logarithm

		Solution	Marks	Remarks
(c)	(i)	One can imagine that there is another larger cube under the cube with 50 cm side length. The length of the square base of the pyramid is the same as the side length of such larger cube, which extends the geometric sequence by one term before the first one. The length of the square base of the pyramid = $50 + \frac{3}{4}$		at.
		$=\frac{200}{3}$ cm	1A	r.t. 66.7 cm
		One can imagine that smaller cubes are placed on top of the decoration one by one. When the number of cubes increases, the		
		when the number of cubes increases, the volume of the part of the pyramid above the top face of the smallest cube approaches zero. The height of the pyramid is the height of the		
		decoration when there is infinitely many cubes, which is 200 cm.	1A	
	(ii)	The volumes of the cubes forms a geometric sequence with common ratio $\left(\frac{3}{4}\right)^3 = \frac{27}{64}$.		
		The volume of the decoration = $50^3 + 50^3 \times \frac{27}{64} + 50^3 \times \left(\frac{27}{64}\right)^2 + + 50^3 \times \left(\frac{27}{64}\right)^6$	1 M	
		$= \left[50^3 \times \frac{1 - \left(\frac{27}{64}\right)^7}{1 - \frac{27}{64}} \right] \text{cm}^3$	1 M	for sum of geometric sequence
		The volume of the space in the pyramid $= \frac{1}{3} \left(\frac{200}{3}\right)^2 (200) - 50^3 \times \frac{1 - \left(\frac{27}{64}\right)^7}{1 - \frac{27}{64}}$		
		= 80594.33066 cm ³ > 80000 cm ³	5255	(a)
		Thus, the epoxy resin will not overflow.	1A 13	fi
		Na		

- 13 -

...