2018-DSE MATH CP PAPER 2

LONGMAN MATHEMATICS SERIES HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2018 MOCK PAPER

MATHEMATICS Compulsory Part PAPER 2

Time allowed: 1 hour 15 minutes

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first write the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- **3**. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deduced for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$x^2 - y^2 - x + y =$$

A. $(x - y)(x - y - 1)$.
B. $(x - y)(x + y - 1)$.
C. $(x + y)(x - y - 1)$.
D. $(x + y)(x + y - 1)$.

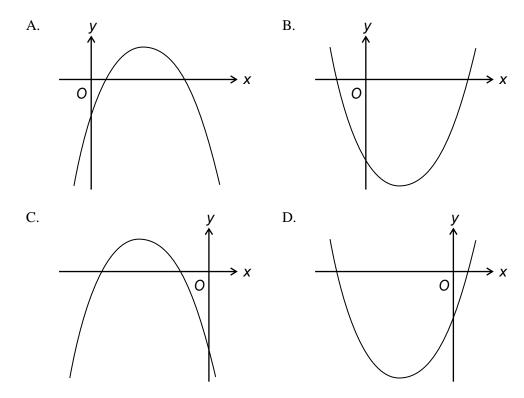
2.
$$(-4)^{444} \left(\frac{1}{2^{222}}\right) =$$

A. -2^{666} .
B. -2^{222} .
C. 2^{222} .
D. 2^{666} .

3. If
$$\frac{x+6y}{3x} = \frac{y}{x} + 1$$
, where $x \neq 0$, then $x =$
A. $\frac{2y}{3}$.
B. $\frac{3y}{2}$.
C. $\frac{2}{3y}$.
D. $\frac{3}{2y}$.

$$4. \qquad \left(\frac{\pi}{5}\right)^3 =$$

- A. 0.24 (correct to 2 significant figures).
- B. 0.2480 (correct to 3 decimal places).
- C. 0.2481 (correct to 4 significant figures).
- D. 0.248 10 (correct to 5 decimal places).

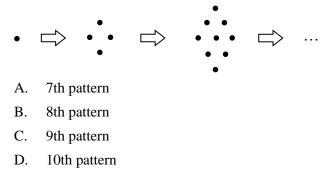

2018-DSE-MATH-CP 2-2

- 5. The solution of 4 x < 2 3x or x + 3 > 2x 5 is
 - A. x < -1.
 - B. x < 8.
 - C. -1 < x < 8.
 - D. x < -1 or x > 8.
- 6. If a and b are constants such that $n(x-3)^2 2x \equiv 9x^2 + mx(x+2) + 18$, then m =
 - A. 7.
 - B. 1.
 - C. -1.
 - D. -7.

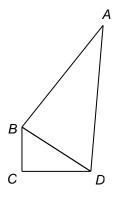
7. Let $f(x) = (x-1)^3 - 6(x-1) + 4$. Which of the following is a factor of f(x)?

- A. x + 1B. x - 2C. x - 3D. x + 2
- 8. If k is a constant such that $x^2 + k(x+5) = 16$ has equal roots, then k = 16
 - A. -8.
 - B. 12.
 - C. 4 or 16.
 - D. 8 or 20.

9. If p < 0 and q > 0, which of the following may represent the graph of $y = (px + q)^2 - 3$?

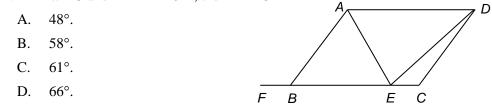

- **10.** The price of a toy car is 25% higher than that of a doll. If the total price of the toy car and the doll is \$270, find the difference between the price of the toy car and that of the doll.
 - A. \$30
 - B. \$37.5
 - C. \$43.2
 - D. \$67.5

11. Let a, b and c be non-zero numbers. If $\frac{1}{2a} = \frac{1}{3b} = \frac{1}{4c}$, then (a + b) : (b + c) =

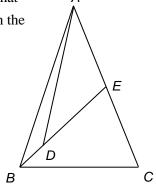

- A. 5:6.
- B. 5:7.
- C. 10:7.
- D. 10:9.

2018-DSE-MATH-CP 2-4

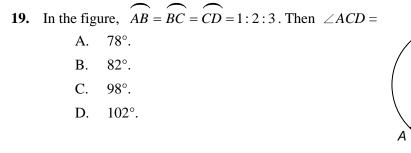
- 12. It is given that z varies inversely as \sqrt{x} and directly as y^2 . If x is decreased by 36% and y is increased by 20%, then z is
 - A. decreased by 16%.
 - B. decreased by 44%.
 - C. increased by 50%.
 - D. increased by 80%.
- 13. In the figure, the 1st pattern consists of 1 dot. For any positive integer *n*, the (n + 1)th pattern is formed by adding (2n + 1) dots to the *n*th pattern. Which pattern has 81 dots?

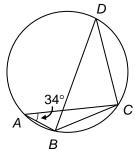


- 14. In the figure, AB is perpendicular to BD and BC is perpendicular to CD. It is given that AD = 65 cm, BC = 15 cm and CD = 20 cm. Find the area of ABCD.
 - A. 160 cm^2
 - B. 900 cm^2
 - C. 1800 cm^2
 - D. 2100 cm^2


- 15. The base radius of a circular cone is 6 cm. The upper part of the circular cone is cut so that a frustum with height half of the height of the circular cone is made. If the volume of the frustum is 168π cm³, find the height of the frustum.
 - A. 2 cm
 - B. 4 cm
 - C. 8 cm
 - D. 12 cm

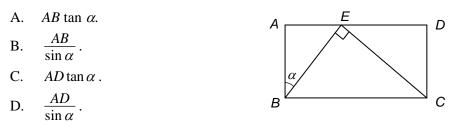
16. In the figure, *E* is a point lying on *BC* such that AB = BE and AE = DE. *CB* is produced to *F*. If *AD* // *FC* and $\angle ABF = 132^\circ$, then $\angle DEC =$

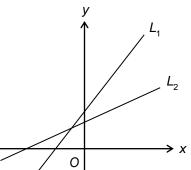



17. In the figure, $\angle ABC = \angle BEC$. *D* is a point lying on *BE* such that AB : BD : DE = 8 : 1 : 3. If the area of $\triangle ADE$ is 18 cm^2 , then the area of $\triangle ABC$ is

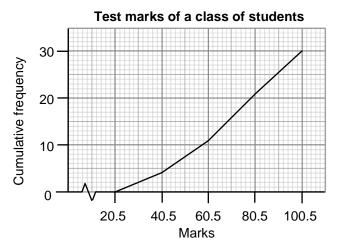
- A. 32 cm^2 .
- B. 36 cm^2 .
- C. 42 cm^2 .
- D. 48 cm^2 .

- **18.** *ABCD* is a parallelogram. Let *P*, *Q*, *R* and *S* be the mid-points of *AB*, *BC*, *CD* and *AD* respectively. Which of the following must be true?
 - I. AP = CR
 - II. $\angle QPS = \angle SRQ$
 - III. $\triangle QCR \cong \triangle SDR$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III




20. In the figure, *OAB* is a sector with centre *O*. *C* is a point on *OB* such that $AC \perp OB$. If $\angle AOB = 60^{\circ}$ and the area of the shaded region is 32 cm², find the radius of the sector correct to the nearest 0.1 cm.

21. In the figure, *ABCD* is a rectangle. *E* is a point lying on *AD* such that $\angle BEC = 90^{\circ}$. If $\angle ABE = \alpha$, then *CE* =

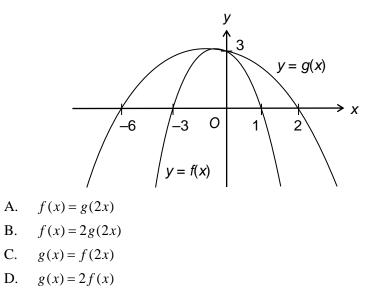


- **22.** If the sum of the interior angles of a regular *n*-sided polygon is 12 times an exterior angle of the polygon, which of the following is true?
 - A. The value of n is 4.
 - B. Each interior angle of the polygon is 168°.
 - C. The number of diagonals of the polygon is 9.
 - D. The number of folds of rotational symmetry of the polygon is 12.
- **23.** In the figure, the equations of the straight lines L_1 and L_2 are ax + by = 1 and cx + 3y = 1 respectively. Which of the following are true?
 - I. *a* < 0
 - II. 0 < b < 3
 - III. c > 0
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 24. The straight line L_2 is perpendicular to the straight line $L_1 : 4x 3y + 6 = 0$. If L_2 has the same *y*-intercept as L_1 , then the equation of L_2 is
 - A. 3x + 4y 8 = 0. B. 3x + 4y + 6 = 0. C. 4x - 3y - 8 = 0.
 - D. 4x 3y + 6 = 0.
- **25.** The polar coordinates of the points *A*, *B* and *C* are $(4, 40^\circ)$, $(5, 220^\circ)$ and $(6, 280^\circ)$ respectively. The perpendicular distance from *C* to *AB* is
 - A. 3. B. $2\sqrt{3}$. C. $3\sqrt{3}$. D. 6.
- **26.** The equation of the circle C is $2x^2 + 2y^2 + 20x 12y + 15 = 0$. Which of the following are true?
 - I. The coordinates of the centre of *C* are (-5, 3).
 - II. The radius of *C* is 11 units.
 - III. The point (2, 0) lies outside *C*.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 27. It is given that A and B are two distinct points on the straight line 4x 7y + k = 0, where k is a constant. Let P be a moving point in the rectangular coordinate plane such that $AP^2 + BP^2 = AB^2$. If the equation of the locus of P is $x^2 + y^2 8x 6y + 21 = 0$, find the value of k.
 - A. -16
 B. -5
 C. 5
 - D. 16

28. The following cumulative frequency polygon shows the test marks of a class of students.

Find the median mark.


- A. 50.5
- B. 64.5
- C. 68.5
- D. 79.5
- **29.** There are five balls numbered '2', '4', '5', '7' and '9' in a box. In a game, two balls are randomly drawn from the box at the same time. If the sum of the two numbers drawn is odd, 15 tokens will be obtained; otherwise, 25 tokens will be obtained. Find the expected number of tokens obtained in the game.
 - A. 19B. 19.8C. 20.2
 - D. 21
- **30.** Consider the following ten positive integers:

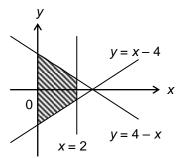
4 5 7 8 9 10 12 *a b c* If the mean of the above positive integers is 6, which of the following must be true?

- I. Median of the ten integers = 6
- II. Mode of the ten integers = 1
- III. Range of the ten integers = 11
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

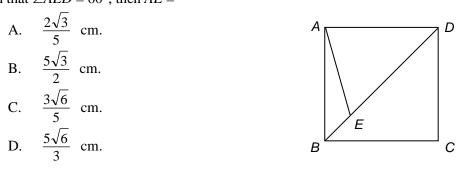
Section B

- **31.** The H.C.F. of $4a^3b^3$, $8a^4$, $12ab^2$ is
 - A. 4*a*.
 - B. $4ab^2$.
 - C. $24a^4b^3$.
 - D. $24a^8b^5$.
- **32.** The figure below shows two quadratic graphs y = f(x) and y = g(x) with the same *y*-intercept. Which of the following may represent the relationship between f(x) and g(x)?

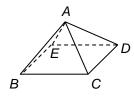
33.
$$4^{16} + 8^{16} =$$


- A. 10001000₁₆.
- B. 1000100000_{16} .
- $C. \quad 10001000000_{16}.$
- $D. \quad 100010000000_{16}.$

34. The graph in the figure shows the linear relation between x and $\log_3 y$. Which of the following must be true? $\log_3 y$

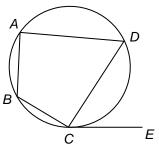

35. Let *k* be a real number. If the real part and the imaginary part of $\frac{k}{2+i} + 4 + i$ are equal, then k =

- A. -5. B. -3. C. 3. D. 5.
- **36.** If x > 1, which of the following is/are geometric sequence(s)?
 - I. $\log x, (\log x)^2, (\log x)^3$
 - II. $\log x$, $\log x^2$, $\log x^3$
 - III. $\log_2 x$, $\log_4 x$, $\log_{16} x$
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- **37.** If (x, y) is a point lying in the shaded region bounded by y = x 4, y = 4 x,
 - x = 2 and the y-axis (including the boundary), what is the greatest value of 4x + 3y?
 - A. 2
 - B. 12
 - C. 14
 - D. 16



38. For $0^{\circ} \le \theta \le 360^{\circ}$, how many roots does the equation $\cos^2 x = 2\sin x + 1$ have?

- A. 0
- B. 1
- C. 3
- D. 5
- **39.** In the figure, *ABCD* is a square with diagonal $BD = 5\sqrt{2}$ cm. If *E* is a point lying on *BD* such that $\angle AED = 60^{\circ}$, then AE =



- **40.** *ABCDE* is a right pyramid with square base *BCDE*. If AB = BC, find the angle between the adjacent planes *ABC* and *ACD*, correct to 3 significant figures if necessary.
 - A. 70.5°
 - B. 90°C. 109°
 - D. 141°

41. In the figure, *CE* is the tangent to the circle at *C*. If AB = BC and $\angle ADC = 46^{\circ}$, then $\angle BCE =$

- A. 111°.
- B. 134°.
- C. 157°.
- D. 164°.

- **42.** The coordinates of *X* and *Y* are (6, -6) and (6, *b*) respectively. If C(a, -2) is the circumcentre of $\triangle OXY$, where *O* is the origin, then a + b =
 - A. 5.
 - B. 6.
 - C. 7.
 - D. 8.
- **43.** There are 15 boys and 10 girls in a choir team. If a group of 5 students is selected from the team to participate in a singing contest and the group consists of at least one boy and at least one girl, how many different groups can be formed?
 - A. 49 875
 - B. 53 130
 - C. 242 364
 - D. 265 650
- **44.** There are 10 bowls in a box, of which 4 of them are red. If 3 bowls are randomly chosen from the box with replacement, find the probability that at most 2 red bowls are chosen.
 - A. $\frac{1}{30}$ B. $\frac{8}{125}$ C. $\frac{117}{125}$ D. $\frac{29}{30}$
- **45.** Let m_1 , r_1 and v_1 be the median, the range and the variance of a group of numbers $\{a-5, b-5, c-5, d-5, e-5, f-5\}$ respectively while m_2 , r_2 and v_2 be the median, the range and the variance of the group of numbers $\{2a, 2b, 2c, 2d, 2e, 2f\}$ respectively. Which of the following must be true?
 - I. $m_2 = 2m_1 + 5$
 - II. $r_2 = 2r_1$
 - III. $v_2 = 4v_1$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

END OF PAPER