Section A  
1. B  

$$x^2 - y^2 - x + y = (x + y)(x - y) - (x - y)$$
  
 $= (x - y)(x + y - 1)$   
2. D  
 $(-4)^{444} (\frac{1}{2^{222}}) = (-1)^{444} (2^2)^{444} (\frac{1}{2^{222}})$ 

$$(2^{222})$$
  $(2^{888-222})$   
= 2<sup>666</sup>

**3.** B

$$\frac{x+6y}{3x} = \frac{y}{x} + 1$$
$$\frac{x+6y}{3x} = \frac{y+x}{x}$$
$$x+6y = 3(y+x)$$
$$x+6y = 3y+3x$$
$$3y = 2x$$
$$x = \frac{3y}{2}$$

**4.** C

```
\left(\frac{\pi}{5}\right)^3 \approx 0.248\ 050\ 213
For option A:
0.248\ 050\ 213 = 0.25 (cor. to 2 sig. fig.)
For option B:
0.248\ 050\ 213 = 0.248 (cor. to 3 d.p.)
For option C:
0.248\ 050\ 213 = 0.2481 (cor. to 4 sig. fig.)
For option D:
0.248\ 050\ 213 = 0.248\ 05 (cor. to 5 d.p.)
\therefore The answer is C.
```

L.H.S. = 
$$n(x-3)^2 - 2x$$
  
=  $n(x^2 - 6x + 9) - 2x$   
=  $nx^2 - 6nx + 9n - 2x$   
=  $nx^2 - (6n + 2)x + 9n$   
R.H.S. =  $9x^2 + mx(x+2) + 18$   
=  $9x^2 + mx^2 + 2mx + 18$   
=  $(9+m)x^2 + 2mx + 18$   
 $\therefore nx^2 - (6n+2)x + 9n \equiv (9+m)x^2 + 2mx + 18$ 

By comparing the coefficients of  $x^2$  and the constant term, we have  $(n = 9 + m \dots (1))$ 9n = 18 .....(2) By substituting (1) into (2), we have 9(9+m) = 189 + m = 2m = -77. C  $f(x) = (x-1)^3 - 6(x-1) + 4$ For option A:  $f(-1) = (-1-1)^3 - 6(-1-1) + 4$  $=(-2)^{3}-6(-2)+4$ = 8 ≠0  $\therefore$  x + 1 is not a factor of f(x). For option B:  $f(2) = (2-1)^3 - 6(2-1) + 4$  $=1^{3}-6(1)+4$ = -1≠0  $\therefore$  x-2 is not a factor of f(x). For option C:  $f(3) = (3-1)^3 - 6(3-1) + 4$  $=2^{3}-6(2)+4$ = 0  $\therefore$  x - 3 is a factor of f(x).  $\therefore$  The answer is C. 8. C  $x^{2} + k(x+5) = 16$  $x^2 + kx + 5k - 16 = 0$ •.•  $x^2 + kx + 5k - 16 = 0$  has equal roots.  $\Delta = 0$ · .  $k^2 - 4(1)(5k - 16) = 0$  $k^2 - 20k + 64 = 0$ (k-4)(k-16) = 0k = 4 or k = 16

$$y = (px+q)^2 - 3$$
$$= p^2 \left[ x - \left( -\frac{q}{p} \right) \right]^2 - 3$$
$$\therefore p^2 > 0$$

 $\therefore$  The graph of  $y = (px + q)^2 - 3$  opens upwards.

$$\therefore p < 0 \text{ and } q > 0$$

$$-\frac{q}{p} > 0$$

i.e. The *x*-coordinate of the vertex of the graph is positive.

 $\therefore$  The answer is B.

10. A

Let x be the price of the doll. Then the price of the toy car = (1+25%)x = 1.25x1.25x + x = 270

- 2.25x = 270
  - x = 120
- ... The prices of the toy car and the doll are \$150 and \$120 respectively.
- The difference in price = (150 120)

= <u>\$30</u>

$$\frac{1}{2a} = \frac{1}{3b}$$

$$3b = 2a$$

$$a = \frac{3b}{2}$$

$$\frac{1}{3b} = \frac{1}{4c}$$

$$4c = 3b$$

$$c = \frac{3b}{4}$$

$$\frac{a+b}{b+c} = \frac{\frac{3b}{2}+b}{b+\frac{3b}{4}}$$

$$= \frac{\frac{5b}{2}}{\frac{7b}{4}}$$

$$= \frac{10}{7}$$

$$\therefore (a+b): (b+c) = \underline{10:7}$$

12. D

Let  $z = \frac{ky^2}{\sqrt{x}}$ , where k is a non-zero constant. New value of x = (1 - 36%)x = 0.64xNew value of y = (1 + 20%)y = 1.2yNew value of  $z = \frac{k(1.2y)^2}{\sqrt{0.64x}}$   $= \frac{1.44ky^2}{0.8\sqrt{x}}$   $= \frac{1.8ky^2}{\sqrt{x}}$  = 1.8z $\therefore$  Percentage change of  $z = \frac{1.8z - z}{z} \times 100\%$ 

 $\therefore$  z is increased by 80%.

13. C Let T(n) be the number of dots in the *n*th pattern. T(3) = 9T(4) = 9 + [2(3) + 1] = 16T(5) = 16 + [2(4) + 1] = 25T(6) = 25 + [2(5) + 1] = 36T(7) = 36 + [2(6) + 1] = 49T(8) = 49 + [2(7) + 1] = 64T(9) = 64 + [2(8) + 1] = 81... The 9th pattern has 81 dots. Alternative Solution By inspection,  $T(n) = n^2$ .  $n^2 = 81$  $\therefore n = 9$ ... The 9th pattern has 81 dots. **14.** B In  $\triangle BCD$ ,  $BD = \sqrt{BC^2 + CD^2}$ (Pyth. theorem)  $=\sqrt{15^2+20^2}$  cm = 25 cm In  $\triangle ABD$ ,  $AB^2 + BD^2 = AD^2$ (Pyth. theorem)  $AB = \sqrt{AD^2 - BD^2}$  $=\sqrt{65^2-25^2}$  cm  $= 60 \, \text{cm}$ Area of ABCD = area of  $\triangle BCD$  + area of  $\triangle ABD$  $= \left(\frac{1}{2} \times 15 \times 20 + \frac{1}{2} \times 60 \times 25\right) \mathrm{cm}^2$ =(150+750) cm<sup>2</sup>  $=900 \text{ cm}^2$ 

15. C

Let  $r_1$  cm and  $r_2$  cm be the base radius of the upper part of the cone and that of the original cone respectively, while  $h_1$  cm and  $h_2$  cm be the height of the upper part of the cone and that of the original cone respectively.

$$h_{1} = \frac{1}{2}h_{2}$$

$$\frac{r_{1}}{r_{2}} = \frac{h_{1}}{h_{2}}$$

$$\frac{r_{1}}{r_{6}} = \frac{\frac{1}{2}h_{2}}{h_{2}}$$

$$\frac{r_{1}}{r_{6}} = \frac{1}{2}$$

$$r_{1} = 3$$

$$\therefore \quad \text{The volume of the frustum is 168 $\pi$ cm}^{3}.$$

$$\therefore \qquad \frac{1}{3}\pi r_{2}^{2}h_{2} - \frac{1}{3}\pi r_{1}^{2}h_{1} = 168\pi$$

$$\frac{1}{3}\pi (6)^{2}h_{2} - \frac{1}{3}\pi (3)^{2} (\frac{1}{2}h_{2}) = 168\pi$$

$$\frac{1}{3}\pi h_{2} (6^{2} - 3^{2} \times \frac{1}{2}) = 168\pi$$

$$h_{2} = 16$$

$$\therefore \quad \text{The height of the frustum } = \frac{16}{2} \text{ cm}$$

$$= 8 \text{ cm}$$

© Pearson Education Asia Limited 2017

16. D AB = BE $\therefore \ \angle BAE = \angle BEA$ (base  $\angle$ s, isos.  $\triangle$ ) In  $\triangle ABE$ ,  $\angle BAE + \angle BEA = \angle ABF$  (ext.  $\angle$  of  $\triangle$ )  $2\angle BEA = 132^{\circ}$  $\angle BEA = 66^{\circ}$  $\angle DAE = \angle BEA$ (alt. ∠s, *AD* // *FC*)  $= 66^{\circ}$  $\therefore AE = DE$  $\angle ADE = \angle DAE$  (base  $\angle s$ , isos.  $\triangle$ ) . <sup>.</sup> .  $= 66^{\circ}$  $\angle DEC = \angle ADE$ (alt.  $\angle$ s, *AD* // *FC*)  $= 66^{\circ}$ 

#### 17. A

Consider  $\triangle ABD$  and  $\triangle ADE$ .  $\therefore$  The height of  $\triangle ABD$  with base *BD* = the height of  $\triangle ADE$  with base DE $\frac{\text{Area of } \triangle ABD}{\text{Area of } \triangle ADE} = \frac{BD}{DE} = \frac{1}{3}$ · · . Area of  $\triangle ABD = \frac{1}{3} \times \text{area of } \triangle ADE$  $=\frac{1}{3}\times 18$  cm<sup>2</sup>  $= 6 \text{ cm}^2$ In  $\triangle ABC$  and  $\triangle BEC$ ,  $\angle ABC = \angle BEC$ (given)  $\angle ACB = \angle BCE$ (common angle)  $\angle BAC = 180^{\circ} - \angle ABC - \angle ACB$  $(\angle \text{ sum of } \triangle)$  $=180^{\circ} - \angle BEC - \angle BCE$  $= \angle EBC$  $(\angle \text{ sum of } \triangle)$  $\therefore \triangle ABC \sim \triangle BEC$ (AAA) Let  $x \text{ cm}^2$  be the area of  $\triangle BEC$ .  $\frac{AB}{BE} = \frac{8}{1+3}$ • •  $=\frac{2}{1}$  $\frac{\text{Area of } \triangle ABC}{\text{Area of } \triangle BEC} = \left(\frac{2}{1}\right)^{\frac{1}{2}}$ . <sup>.</sup> .  $\frac{6+18+x}{6} = 4$ x 24 + x = 4x24 = 3xx = 8 $\therefore$  Area of  $\triangle ABC = (6 + 18 + 8) \text{ cm}^2$  $= 32 \text{ cm}^2$ 

**18.** A

Refer to the figure. A = S = C B = B = C

∴ *ABCD* is a parallelogram and *P*, *Q*, *R* and *S* are the mid-points of *AB*, *BC*, *CD* and *AD* respectively.

 $\therefore$  AP = PB = DR = CR and BQ = QC = AS = SD(opp. sides of // gram)

For I: AP = CR... I must be true. For II: AP = CR and AS = QC(opp.  $\angle$ s of // gram)  $\angle PAS = \angle RCQ$  $\therefore \quad \triangle PAS \cong \triangle RCQ \quad (SAS)$  $\therefore PS = RQ$ (corr. sides,  $\cong \triangle s$ ) Similarly,  $\triangle PBQ \cong \triangle RDS$ (SAS)  $\therefore PQ = RS$ (corr. sides,  $\cong \triangle s$ )  $\therefore$  *PQRS* is a parallelogram. (opp. sides equal)  $\therefore \ \angle QPS = \angle SRQ$ (opp.  $\angle$ s of // gram) . II must be true. For III: •.•  $\triangle QCR \cong \triangle SDR$  only when  $\angle QCR = \angle SDR$ . . . III may not be true.  $\therefore$  The answer is A. **19.** A  $\angle BDC = \angle BAC = 34^\circ$  ( $\angle s$  in the same segment)  $\frac{\angle ACB}{\angle BAC} = \frac{\widehat{AB}}{\widehat{BC}}$ (arcs prop. to  $\angle s$  at  $\odot^{ce}$ )  $\angle ACB = \frac{1}{2} \times 34^{\circ}$  $=17^{\circ}$  $\frac{\angle DBC}{\angle BAC} = \frac{CD}{BC}$ (arcs prop. to  $\angle$ s at  $\odot^{ce}$ )  $\angle DBC = \frac{3}{2} \times 34^{\circ}$ = 51° In  $\triangle BCD$ ,  $\angle BDC + \angle BCD + \angle DBC = 180^{\circ} \ (\angle \text{ sum of } \bigtriangleup)$  $34^{\circ} + (17^{\circ} + \angle ACD) + 51^{\circ} = 180^{\circ}$  $\angle ACD = 78^{\circ}$ **20.** C Let *r* cm be the radius of the sector *OAB*. In  $\triangle OAC$ ,  $\cos 60^\circ = \frac{OC}{OA}$ and  $\sin 60^\circ = \frac{AC}{OA}$  $AC = \frac{\sqrt{3}r}{2}$  $OC = \frac{r}{2}$ Area of  $\triangle OAC = \frac{1}{2} \times OC \times AC$  $=\frac{1}{2}\times\frac{r}{2}\times\frac{\sqrt{3}r}{2}\,\mathrm{cm}^2$  $=\frac{\sqrt{3}r^2}{8}$  cm<sup>2</sup>

 $\therefore$  Area of sector *OAB* – area of  $\triangle OAC$  = area of the shaded region

$$\therefore \quad \frac{60^{\circ}}{360^{\circ}} \times \pi r^2 - \frac{\sqrt{3}r^2}{8} = 32$$
$$r^2 \left(\frac{\pi}{6} - \frac{\sqrt{3}}{8}\right) = 32$$

$$r^2 \approx 104.2032$$
  
 $r = 10.2$  (cor. to the nearest 0.1)  
 $\therefore$  The radius of the sector is 10.2 cm.

© Pearson Education Asia Limited 2017

**21.** B

In 
$$\triangle ABE$$
,  
 $\cos \alpha = \frac{AB}{BE}$   
 $BE = \frac{AB}{\cos \alpha}$   
 $\angle EBC = 90^\circ - \alpha$   
In  $\triangle CBE$ ,  
 $\tan(90^\circ - \alpha) = \frac{CE}{BE}$   
 $CE = BE \times \frac{1}{\tan \alpha}$   
 $= \frac{AB}{\cos \alpha} \times \frac{\cos \alpha}{\sin \alpha}$   
 $= \frac{AB}{\sin \alpha}$ 

22. C  $(n-2) \times 180^{\circ} = 12 \times \frac{360^{\circ}}{n}$   $n-2 = \frac{24}{n}$   $n^{2} - 2n - 24 = 0$  n = 6 or n = -4 (rejected)  $\therefore \text{ The polygon is a regular hexagon.}$ For option A: The value of n is 6.  $\therefore \text{ Option A is not true.}$ For option B: Size of each interior angle of a regular hexagon  $= \frac{(6-2) \times 180^{\circ}}{6}$   $= 120^{\circ}$ 

: Option B is not true. For option C:



Number of diagonals of a regular hexagon = 9  $\therefore$  Option C is true. For option D: The number of folds of rotational symmetry of a regular hexagon is 6.

- $\therefore$  Option D is not true.
- $\therefore$  The answer is C.

*x*-intercept of  $L_1 = \frac{1}{a}$ 

 $\therefore$  From the graph, the *x*-intercept of  $L_1$  is negative.

$$\frac{1}{a} < 0$$

. I is true.

For II: y-intercept of  $L_1 = \frac{1}{h}$ y-intercept of  $L_2 = \frac{1}{3}$ ·.· From the graph, the *y*-intercept of  $L_1$  > the *y*-intercept of  $L_2$  $\frac{1}{b} > \frac{1}{3}$ · · . 0 < h < 3. II is true. For III: x-intercept of  $L_2 = \frac{1}{c}$ From the graph, the *x*-intercept of  $L_2$  is negative. •.•  $\frac{1}{c} < 0$ ŀ. c < 0. III is not true.  $\therefore$  The answer is A. 24. A Slope of  $L_1 = -\frac{4}{-3} = \frac{4}{3}$  $\therefore$   $L_2$  is perpendicular to  $L_1$ .  $\therefore$  Slope of  $L_2 \times$  slope of  $L_1 = -1$ Slope of  $L_2 \times \frac{4}{3} = -1$ Slope of  $L_2 = -\frac{3}{4}$ y-intercept of  $L_1 = -\frac{6}{-3} = 2$  $\therefore$   $L_2$  has the same *y*-intercept as  $L_1$ .  $\therefore$  The equation of  $L_2$  is  $y = -\frac{3}{4}x + 2$ 4y = -3x + 83x + 4y - 8 = 025. C Let *D* be the point on *AB* such that  $CD \perp AB$ . 60° 150 (4,40°) 30° 180 2100 B(5,2202) 330 C(6,280°) 240° 270°  $\angle COD = 280^\circ - 220^\circ = 60^\circ$ In  $\triangle COD$ ,  $\sin \angle COD = \frac{CD}{OC}$  $CD = 6 \times \sin 60^{\circ}$ 

$$= 6 \times \frac{\sqrt{3}}{2}$$
$$= 3\sqrt{3}$$

 $\therefore$  The perpendicular distance from *C* to *AB* is  $3\sqrt{3}$ .

**26.** B

The equation of the circle C is:  $2x^2 + 2y^2 + 20x - 12y + 15 = 0$ 

$$x^{2} + y^{2} + 10x - 6y + \frac{15}{2} = 0$$

For I:

Centre of 
$$C = \left(-\frac{10}{2}, -\frac{(-6)}{2}\right) = (-5, 3)$$
  
... Lis true.

For II:

Radius of 
$$C = \sqrt{\left(\frac{10}{2}\right)^2 + \left(\frac{-6}{2}\right)^2 - \frac{15}{2}}$$
 units  
=  $\sqrt{\frac{53}{2}}$  units

 $\therefore$  II is not true.

For III: Distance between the point (2, 0) and the centre of  $C = \sqrt{(-5-2)^2 + (3-0)^2}$  units

$$=\sqrt{(-7)^2+3^2}$$
 units

 $=\sqrt{58}$  units

> the radius of C

i.e. The point (2, 0) lies outside *C*.

:. III is true.

 $\therefore$  The answer is B.

#### **27.** C

 $\therefore \quad AP^2 + BP^2 = AB^2$ 

- $\therefore \ \angle APB = 90^{\circ}$  (converse of Pyth. theorem)
- $\therefore$  The locus of *P* is a circle with diameter *AB*. (converse of  $\angle$  in semi-circle)
- i.e. The centre of the locus of *P* lies on the straight line 4x 7y + k = 0.

The centre of the locus of  $P = \left(-\frac{(-8)}{2}, -\frac{(-6)}{2}\right) = (4, 3)$ 

By substituting (4, 3) into the equation 4x - 7y + k = 0, we have 4(4) - 7(3) + k = 0

$$4(4) - 7(3) + k = 0$$
  
 $k = \underline{5}$ 

**28.** C





30.

| A<br>The p                                        | ossible                           | outcom                         | <b></b>                       |                   |                             |                         |  |
|---------------------------------------------------|-----------------------------------|--------------------------------|-------------------------------|-------------------|-----------------------------|-------------------------|--|
| rne p                                             | 0551010                           | outcom                         | <b>CS</b> .                   | 2nd ball          |                             |                         |  |
|                                                   |                                   | 2                              | 4                             | 5                 | 7                           | 9                       |  |
|                                                   | 2                                 |                                | (2, 4)                        | (2, 5)            | (2,7)                       | (2, 9)                  |  |
| lle                                               | 4                                 | (4, 2)                         |                               | (4, 5)            | (4, 7)                      | (4, 9)                  |  |
| t þ                                               | 5                                 | (5, 2)                         | (5, 4)                        |                   | (5,7)                       | (5, 9)                  |  |
| $1_{\rm S}$                                       | 7                                 | (7, 2)                         | (7, 4)                        | (7, 5)            |                             | (7, 9)                  |  |
|                                                   | 9                                 | (9, 2)                         | (9, 4)                        | (9, 5)            | (9,7)                       |                         |  |
| P(the                                             | sum is                            | $s \text{ odd}) = \frac{1}{2}$ | $\frac{12}{20} = \frac{3}{5}$ |                   |                             |                         |  |
| P(the                                             | sum is                            | even) =                        | $\frac{8}{8} = \frac{2}{2}$   |                   |                             |                         |  |
| 1 (110                                            | 50111 10                          | , e , e , ,                    | 20 5                          |                   |                             |                         |  |
| Expec                                             | cted nu                           | mber of                        | tokens ol                     | otained =         | $15 \times \frac{3}{2} + 3$ | $25 \times \frac{2}{2}$ |  |
| 1                                                 |                                   |                                |                               |                   | 5                           | 5                       |  |
|                                                   |                                   | $=\underline{\underline{19}}$  |                               |                   |                             |                         |  |
|                                                   |                                   |                                |                               |                   |                             |                         |  |
|                                                   |                                   | 6.4                            | , · ,                         | • •               |                             |                         |  |
| . The mean of the ten integers is 6.              |                                   |                                |                               |                   |                             |                         |  |
| $\therefore \frac{4+5+7+8+9+10+12+a+b+c}{10} = 6$ |                                   |                                |                               |                   |                             |                         |  |
|                                                   |                                   |                                | 10                            |                   |                             |                         |  |
|                                                   |                                   | 33 + a + b + c = 60            |                               |                   |                             |                         |  |
|                                                   |                                   | a+b+c=5                        |                               |                   |                             |                         |  |
| Suppo                                             | ose $a \leq$                      | $b \leq c.$ T                  | here are 2                    | 2 cases           |                             |                         |  |
| Case 1: $a = 1, b = 1$ and $c = 3$                |                                   |                                |                               |                   |                             |                         |  |
| Case 2                                            | 2: $a =$                          | = 1, b = 2                     | c = c                         | 2                 |                             |                         |  |
| In hot                                            | h case                            | s arrange                      | e the ten                     | integers          | in ascend                   | ling order              |  |
| III 000                                           | b                                 | $c \qquad 4$                   | 5                             | 7 8               | 9 10                        | 12                      |  |
|                                                   |                                   |                                | 5                             | 5+7 -             | ,                           |                         |  |
| Media                                             | an of th                          | ne ten int                     | egers = -                     | $\frac{1}{2} = 6$ |                             |                         |  |
| . I                                               | must                              | be true.                       |                               |                   |                             |                         |  |
| For II                                            | :                                 |                                |                               |                   |                             |                         |  |
| Case                                              | 1: a :                            | = 1, b = 1                     | and $c =$                     | 3                 |                             |                         |  |
|                                                   | Mode of the ten integers $= 1$    |                                |                               |                   |                             |                         |  |
| Case 2                                            | ase 2: $a = 1, b = 2$ and $c = 2$ |                                |                               |                   |                             |                         |  |
|                                                   | Μ                                 | ode of th                      | e ten inte                    | egers $= 2$       |                             |                         |  |
| . I                                               | I may                             | not be tru                     | ıe.                           |                   |                             |                         |  |
| For II                                            | I:                                |                                |                               |                   |                             |                         |  |
| In bot                                            | h case                            | s, <i>a</i> = 1                |                               |                   |                             |                         |  |
| Range                                             | e of the                          | e ten inte                     | gers = 12                     | 2 - 1 = 11        | l                           |                         |  |
| . I                                               | II mus                            | t be true.                     |                               |                   |                             |                         |  |
| .: Т                                              | The ans                           | swer is C                      |                               |                   |                             |                         |  |

#### Section B

31. 
$$\boxed{A}$$

$$4a^{3}b^{3} = 2^{2} \bullet a^{3} \bullet b^{3}$$

$$8a^{4} = 2^{3} \bullet a^{4}$$

$$12ab^{2} = 2^{2} \bullet 3 \bullet a \bullet b^{2}$$

$$\therefore \text{ The H.C.F. of } 4a^{3}b^{3}, 8a^{4}, 12ab^{2} = 2^{2} \bullet a$$

$$= 4a$$

33. D  $4^{16} + 8^{16} = (2^2)^{16} + (2^3)^{16}$   $= 2^{32} + 2^{48}$   $= (2^4)^8 + (2^4)^{12}$   $= 1 \times 16^8 + 1 \times 16^{12}$  $= 1000100000\ 000_{16}$ 

#### **34.** D

The slope of the straight line =  $\frac{4-0}{0-(-4)} = \frac{4}{4} = 1$   $\therefore$  The equation of the straight line is  $\log_3 y = x + 4$ .  $\therefore \qquad \log_3 y = x + 4$   $\therefore \qquad y = 3^{x+4}$   $= 3^x(3^4)$  $= 81(3^x)$ 

35. 
$$\boxed{A} = \frac{k}{2+i} + 4 + i = \frac{k}{2+i} \times \frac{2-i}{2-i} + 4 + i$$
$$= \frac{k(2-i)}{2^2 - i^2} + 4 + i$$
$$= \frac{2k - ki}{5} + 4 + i$$
$$= \left(\frac{2k}{5} + 4\right) + \left(1 - \frac{k}{5}\right)i$$

: The real part and the imaginary part are equal.

$$\therefore \quad \frac{2k}{5} + 4 = 1 - \frac{k}{5}$$
$$\frac{2k + k}{5} = -3$$
$$3k = -15$$
$$k = -5$$

### **36.** C

For I:  $\frac{(\log x)^2}{\log x} = \log x$   $\frac{(\log x)^3}{(\log x)^2} = \log x$ 

 $\therefore$  log x,  $(\log x)^2$ ,  $(\log x)^3$  is a geometric sequence.

∴ I is true.

For II:

- $\therefore \quad \frac{\log x^2}{\log x} = \frac{2\log x}{\log x} = 2$  $\frac{\log x^3}{\log x^2} = \frac{3\log x}{2\log x} = \frac{3}{2} \neq 2$
- $\therefore$  log x, log  $x^2$ , log  $x^3$  is not a geometric sequence.
- : II is not true.

For III:

 $\therefore \quad \frac{\log_4 x}{\log_2 x} = \frac{\log x}{\log 4} \times \frac{\log 2}{\log x} = \frac{1}{2}$  $\frac{\log_{16} x}{\log_4 x} = \frac{\log x}{\log_1 6} \times \frac{\log 4}{\log x} = \frac{1}{2}$ 

- $\therefore \log_2 x$ ,  $\log_4 x$ ,  $\log_{16} x$  is a geometric sequence.
- . III is true.
- $\therefore$  The answer is C.

# 2018 Mock Paper (Compulsory Part) - Paper 2 (Full Solutions)

37. C By substituting x = 0 into y = x - 4, we have y = 0 - 4 = -4i.e. y = x - 4 intersects the y-axis at (0, -4). By substituting x = 0 into y = 4 - x, we have y = 4 - 0 = 4i.e. y = 4 - x intersects the y-axis at (0, 4). By substituting x = 2 into y = x - 4, we have y = 2 - 4 = -2i.e. x = 2 and y = x - 4 intersect at (2, -2). By substituting x = 2 into y = 4 - x, we have y = 4 - 2 = 2i.e. x = 2 and y = 4 - x intersect at (2, 2). At (0, -4), 4x + 3y = 4(0) + 3(-4) = -12At (0, 4), 4x + 3y = 4(0) + 3(4) = 12At (2, -2), 4x + 3y = 4(2) + 3(-2) = 2At (2, 2), 4x + 3y = 4(2) + 3(2) = 14 $\therefore$  The greatest value of 4x + 3y = 1438. C  $\cos^2 x = 2\sin x + 1$  $1 - \sin^2 x = 2\sin x + 1$  $\sin^2 x + 2\sin x = 0$  $\sin x(\sin x + 2) = 0$  $\sin x = 0 \quad \text{or} \quad \sin x + 2 = 0$  $\sin x = -2$  (rejected) When sin x = 0,  $x = 0^{\circ}$  or  $180^{\circ}$  or  $360^{\circ}$ .  $\therefore$  The equation  $\cos^2 x = 2\sin x + 1$  has 3 roots. **39.** D Let AB = AD = x cm. In  $\triangle ABD$ ,  $BD^2 = AB^2 + AD^2$ (Pyth. theorem)  $(5\sqrt{2})^2 = x^2 + x^2$  $50 = 2x^2$  $x^2 = 25$ x = 5 or x = -5 (rejected)  $\therefore AB = 5 \text{ cm}$  $\angle AEB + \angle AED = 180^{\circ}$  (adj.  $\angle s$  on st. line)  $\angle AEB + 60^\circ = 180^\circ$  $\angle AEB = 120^{\circ}$ In  $\triangle ABE$ , by the sine formula,  $\frac{AE}{\sin 45^\circ} = \frac{AB}{\sin 120^\circ}$  $AE = \frac{5}{\frac{\sqrt{3}}{2}} \times \frac{\sqrt{2}}{2} \text{ cm}$  $= \frac{5\sqrt{6}}{3} \text{ cm}$ 

© Pearson Education Asia Limited 2017

**40.** C

With the notations in the figure, A

Let *N* be a point on *AC* such that  $BN \perp AC$  and  $DN \perp AC$ . The angle between the planes ABC and ACD is  $\angle BND$ . : ABCDE is a right pyramid with square base BCDE and AB = BC.  $\therefore \quad AB = AC = BC = CD$ Let AB = AC = BC = CD = x cm. In  $\triangle BCD$ ,  $BD^2 = BC^2 + CD^2$ (Pyth. theorem)  $BD = \sqrt{x^2 + x^2}$  $=\sqrt{2}x$ In  $\triangle BCN$ ,  $\sin \angle BCN = \frac{BN}{BC}$  $\sin 60^\circ = \frac{BN}{x}$  $BN = \frac{\sqrt{3}}{2}x$ Similarly,  $DN = BN = \frac{\sqrt{3}}{2}x$ In  $\triangle BND$ , by the cosine formula,  $\cos \angle BND = \frac{BN^2 + DN^2 - BD^2}{2}$ 2(BN)(DN)

$$= \frac{\left(\frac{\sqrt{3}}{2}x\right)^2 + \left(\frac{\sqrt{3}}{2}x\right)^2 - (\sqrt{2}x)^2}{2\left(\frac{\sqrt{3}}{2}x\right)\left(\frac{\sqrt{3}}{2}x\right)}$$
$$= -\frac{1}{3}$$

$$\therefore$$
 The angle between the planes *ABC* and *ACD* is 109°

**41.** C



**42.** B

Let  $M(x_M, y_M)$  be the mid-point of *OX*. By the mid-point formula, we have

$$x_M = \frac{0+6}{2}$$
 and  $y_M = \frac{0+(-6)}{2}$   
= 3 = -3

 $\therefore$  The coordinates of *M* are (3, -3).

Slope of 
$$OX = \frac{-6-0}{6-0} = \frac{-6}{6} = -1$$
  
Slope of  $CM = \frac{-2-(-3)}{6} = \frac{1}{2}$ 

- Slope of  $CM = \frac{1}{a-3} = \frac{1}{a-3}$  $\therefore$  *C* is the circumcentre of  $\triangle OXY$ .
- $\therefore C \text{ is the circumcentre of } \Delta OAT.$
- $\therefore$  *CM* is the perpendicular bisector of *OX*.
- $\therefore$  Slope of  $OX \times$  slope of CM = -1

$$1 \times \frac{1}{a-3} = -1$$
$$a-3 = 1$$
$$a = 4$$

Let  $N(x_N, y_N)$  be the mid-point of XY.

Similarly, CN is the perpendicular bisector of XY.

 $\therefore$  *x*-coordinate of *X* = *x*-coordinate of *Y* 

- $\therefore$  *XY* is a vertical line.
- i.e. *CN* is a horizontal line.
- $\therefore$  y-coordinate of N = y-coordinate of C = -2

$$-2 = \frac{-6+b}{2}$$
$$-4 = -6+b$$
$$b = 2$$
$$a+b = 4+2$$
$$= \underline{6}$$

**43.** A

· .

Number of different groups formed without restriction =  $C_{\epsilon}^{15+10}$ 

Number of different groups formed consists of boys only =  $C_5^{15}$ 

= 3003

Number of different groups formed consists of girls only =  $C_5^{10}$ 

= 252

Number of different groups formed consists of at least one boy and at least one girl

= 53 130 - 3003 - 252

**44.** C

7

$$P(\text{at most } 2 \text{ red bowls}) = 1 - P(3 \text{ red bowls})$$

$$= 1 - \left(\frac{4}{10}\right)$$
$$= \frac{117}{125}$$

## **45.** C

Add 5 to each datum of  $\{a - 5, b - 5, c - 5, d - 5, e - 5, d - 5, d$ f-5}, we get another data set  $\{a, b, c, d, e, f\}$  and its median, range and variance are  $m_1 + 5$ ,  $r_1$  and  $v_1$ respectively. Multiply each datum of  $\{a, b, c, d, e, f\}$  by 2, we get

{2a, 2b, 2c, 2d, 2e, 2f} and its median, range and variance are  $2(m_1 + 5)$ ,  $2r_1$  and  $2^2v_1$  respectively.

 $\therefore$   $m_2 = 2(m_1 + 5) \neq 2m_1 + 5$ 

$$r_2 = 2r_1$$

$$r_2 = 2r_1 v_2 = 2^2 v_1 = 4v_1$$

- . II and III are true.
- $\therefore$  The answer is C.