F6 Physics Mock Exam 2019 to 2020 Paper I - Section A Solution

1	2	3	4	5	6	7	8	9	10
A	С	С	С	С	В	С	В	С	В
11	12	13	14	15	16	17	18	19	20
С	D	С	С	С	В	D	A	A	A
21	22	23	24	25	26	27	28	29	30
A	В	A	В	В	D	D	С	A	С
31	32	33							
В	A	A							

Explanation

1. (1) F
$$T_F = 1.8 (0) + 32 = 32 \,^{\circ}\text{F}.$$

(2) T
$$T_F = 1.8 (100) + 32 = 212 \,^{\circ}F.$$

(3) F from (1),
$$T_F = 1.8$$
 (0) + 32 = 32 °F.

For
$$T_C = 1$$
 °C, $T_F = 1.8$ (1) + 32 = 33.8 °F.
 $\Delta T_F = 1.8$ °F

2. By
$$Pt = mc \Delta T$$

Same heater \Rightarrow *P* kept constant

Same material \Rightarrow *c* kept constant

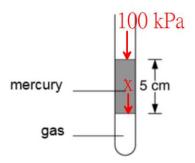
$$\Rightarrow t = m \Delta T$$

$$\Rightarrow \frac{\Delta T}{t} = \frac{1}{m}$$

$$\therefore \frac{1}{m_x} : \frac{1}{m_y} = \frac{60 - 20}{t} : \frac{60 - 40}{t}$$

$$\Rightarrow m_x : m_y = 1 : 2$$

5. Density
$$\rho = \frac{Mass}{Volume}$$


volume =
$$2 \text{ cm}^2 \text{ x } 5 \text{ cm} = 10 \text{ cm}^3$$

mass of mercury =
$$13.4 \times 10 = 0.134 \text{ kg}$$

Weight of mercury = $0.134 \times 9.81 = 1.315 \text{ N}$

Pressure of mercury exerted on the gas =
$$\frac{F}{A} = \frac{1.315}{2 \text{ cm}^2} = 6572.7 \text{ Pa} = 6.6 \text{ kPa}$$

At equilibrium, the pressure of the gas = 100 kPa + 6.6 kPa = 106.6 kPa

6. Average velocity =
$$\frac{Displacement}{Time} = \frac{3+3+4+4}{2+5}$$

7.
$$u = 0, a = g, s = y, t = 1$$

By
$$s = ut + \frac{1}{2}at^2$$

$$y = g/2$$

$$u = 0$$
, $a = g$, $s = ?$, $t = 2$

By
$$s = ut + \frac{1}{2}at^2$$

$$s = 2g = 4y$$

The distance travelled in the 2^{nd} second = 4y - y = 3y

8. The acceleration of the system a = F/m

$$a = 2 / 5 = 0.4$$

The tension S: F = ma

$$F = 3 \times 0.4 = 1.2 \text{ N}$$

9.
$$\sqrt{20^2 + 30^2}$$

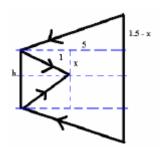
10.
$$mgh = mc\Delta T$$

$$9.81h = 4200(0.15)$$

$$h = 64.22 \text{ m}$$

11. By conservation of momentum: $5000(0) = 2000v_1 + (-3000)v_2$

$$v_1: v_2 = 3:2$$


now,
$$m_1 : m_2 = 2 : 3$$

$$KE_1: KE_2 = 2/3 \times (3/2)^2 = 3:2$$

13. *F* is provided by the friction between the tyre and the road surface. It's not provided by the tyres.

14.
$$a = \frac{GM}{r^2}$$

15. By similar triangle

$$1/5 = x/(1.5 - x)$$

$$x = 0.25 \text{ m}$$

minimum
$$h = 0.25 \times 2 = 0.50 \text{ m}$$

18. From the diagram, $\lambda = 0.55 - 0.05 = 0.5 \text{ m}$

By
$$v = f\lambda = \lambda/T$$

$$T = 0.5 / 20 = 0.025 s$$

27.
$$P_{sin-curve} = 2I_o^2 R (=4W)$$

$$P_{square-curve} = 2.5I_o^2R (=5W)$$

Time required = t - t

33. No. of *Po* atoms in 1 kg = $\frac{1}{210x1.66^{-27}}$

No. of Po nucleus decayed in 64 days =
$$\frac{1}{210x1.661^{-27}}$$
 - $\frac{1}{210x1.661^{-27}}$ e^{-64 λ}

Energy released = No. of Po nucleus decayed in 64 days x 5.31 MeV