Solution

JO14	uon										
	1.	1	1.2		1.3	1.4	1.5 1.6		1.7		1.8
	В	5	В		В	С	D	С	А		D
.9	(a)	Number of photoelectrons emitted by the metal plate per second maximum photoelectric current					nd				
		\pm charge of each photoelectron									
		2.8×10^{-7}									
		$=\frac{1.60 \times 10^{-19}}{1.60 \times 10^{-19}}$								IM	
		= 1.	75×10^{12}						1	IA	
	(b)) Energy of each photon									
		$=\frac{hc}{\lambda}$							1	ΙM	
		6.6	53×10^{-34} >	< 3.00	$\times 10^8$						
		=	480 × 1	10^{-9}							
		= 4.	144×10^{-1}	¹⁹ J							
		Nun	nber of ph	notons	s hitting	the metal p	late per seco	ond			
		int	ensity × ar	ea × ti	me						
		= en	ergy of eac	ch pho	oton						
		- 0.04 × (1 × 10 ⁻⁴) × 1							1		
		$=$ $\frac{4.144 \times 10^{-19}}{10^{-19}}$]	IM		
		= 9.	65×10^{12}						1	IA	
	(c)	Any	one of th	e foll	owing:				1	ΙA	
		Som	e photons	s are i	not absor	rbed by elec	ctrons in the	metal.			
		The energy that some electrons need to escape from the metal plate is higher than the energy of the photon.							plate		
	(d)								of		
	(u)	The kinetic energy of a photoelectron is lower than the energy of the photon it absorbs					01	ΙΔ			
		Some energy of the photon is used up by the photoelectron to							171		
		escape from the metal surface.							1	ΙA	
	(a)								I		
	(6)										
					/>	< 10 ⁻⁷ A					
							/				
						3	' /				
						/	/				
						2					
						1/					
						11/					
						/					
									V		
		-3 -2 -1 0 1 2 3									

(Higher saturated current) (Higher stopping potential)

1A 1A

Exam Number			
-------------	--	--	--

2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8
В	А	D	А	С	D	С	С

\mathbf{a}	\mathbf{O}
Ζ.	9
	-

(a)	The neutrons released after the reaction move at higher speeds.						
(b)	(i)	The binding energy of a nucleus is the amount of energy required					
	to completely separate all its constituent nucleons.						
	(ii) Energy released = increase in binding energy						
	$= 92 \times 8.513 + 141 \times 8.326 - 235 \times 7.590$						
		= 174 MeV	1A				
	(iii)	Energy released by fission each hour					
	=-	0.18 ×174	1M				
	$= 235 \times 1.661 \times 10^{-27} \text{ MeV}$ = 8.02 × 10 ²⁵ MeV = 8.02 × 10 ²⁵ × 10 ⁶ × 1.60 × 10 ⁻¹⁹						
	= 1.	$= 1.28 \times 10^{13} \text{ J}$					
	Pov	Power output $=\frac{Q}{t}$					
	$=\frac{1.28\times10^{13}\times40\%}{3600}$						
		$= 1.42 \times 10^9 \mathrm{W}$	1A				
(c)	Cont	trol rods absorb neutrons.	1A				
	Mor	e neutrons are absorbed when control rods are inserted deeper into					
	the	vessel, hence the rate of fission is reduced.	1A				
(d)	It slo	ows down the fast-moving neutrons produced by fission reactions					
	(mc	oderator). / It transfers heat released by the fission reactions to the					
	stea	m generator (coolant).	1A				