Methodist College

First Mock Examination, 2022 – 2023

F.6 Mathematics

Paper 1 Marking Scheme

Name:		_ Marks:	/ 105
Class:	Class No.:	_ Date: Time:	20 October 2022 8:30 – 10:45 (2 hr. 15 min.)

INSTRUCTIONS:

- 1. This paper consists of THREE sections, A(1), A(2) and B.
- Attempt ALL questions in this paper.
 Write your answers in the spaces provided in this Question-Answer Book.
- 3. Unless otherwise specified, all working must be clearly shown.
- 4. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 5. The diagrams in this paper are not necessarily drawn to scale.
- 6. Students are allowed to use the calculator.

SECTION A(1) (35 marks)

1.	Simplify $\frac{a^6 b^{-4}}{(a^{-5}b^2)^3}$	and express your answer with positive indices. [index]	(3 marks)
----	---	--	-----------

Solution.	
$\frac{a^6b^{-4}}{(a^{-5}b^2)^3}$	
$= \frac{a^6 b^{-4}}{a^{-15} b^6}$	1A+1A
$= \frac{a^{21}}{b^{10}}$	1A

	3

-

_

Let x and y be two numbers. The sum of x and y is 567 while the product of 8 and x is y. Find y.[equations] (3 marks)

Solution.	
$\begin{cases} x + y = 567(1) \\ 8x = y(2) \end{cases}$	1A _
Sub. (2) into (1),	
x + 8y = 567	1M -
x = 63	
<i>y</i> = 504	1A

3

ſ

Solution.	
$\frac{4}{m+8} - \frac{3}{5m+6}$	
$= \frac{4(5m+6) - 3(m+8)}{(m+8)(5m+6)}$	1A -
$= \frac{20m + 24 - 3m - 24}{(m+8)(5m+6)}$	1A
$= \frac{17m}{(m+8)(5m+6)}$	1A

4. Factorize	[factorization]
--------------	-----------------

- (a) $p^2 4pq + 4q^2$,
- (b) $(2p+1)^2 p^2 + 4pq 4q^2$.

(4 marks)

Solution.

(a)	$p^2 - 4pq + 4q^2$		
	$= (p - 2q)^2$	1A	
(b)	$(2p+1)^2 - p^2 + 4pq - 4q^2$		
	$= (2p+1)^2 - (p^2 - 4pq + 4q^2)$		
	$= (2p+1)^2 - (p-2q)^2$	1 M	•
	= [(2p + 1) - (p - 2q)][(2p + 1) + (p - 2q)]	1 M	•
	= (2p + 1 - p + 2q)(2p + 1 + p - 2q)		•
	= (p + 2q + 1)(3p - 2q + 1)	1A	-

3

(3 marks)

٦

A

5. A clock is sold at a discount of 35% on its marked price. After selling the clock, the loss is \$110 and the percentage loss is 22%. Find the marked price of the clock. [percentage] (4 marks)

Solution.	
$C \times 22\% = 110$	1M
C = 500	
S = 500 - 110 = 390	1A
390 = M(1 - 35%)	1M
M = \$600	1A

	4

6. Consider the compound inequality

-3(2x-1) > x + 10 or $3x + 9 \le 0$(*).

- (a) Solve (*).
- (b) Write down the greatest integer satisfying (*).

[inequalities]

(4 marks)

Solu	tion.			
(a)	-3(2x-1) > x + 10	or	$3x + 9 \le 0$	
	-6x + 3 > x + 10	or	$3x \leq -9$	
	-7x > 7	or	$x \leq -3$	ĺ
	$x \leq -1$	or	$x \leq -3$	1A+1A
.:.	$x \leq -1$			1A
(b)	-2			1A

4

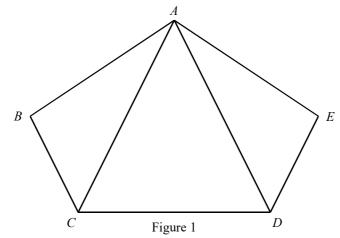
- 7. The coordinates of the points M and N are (-11, 6) and (-2, -5) respectively. M is rotated anticlockwise about O through 90° to M', where O is the origin. N' is the reflection image of Nwith respect to the y-axis.[polar coordinates, rotation, reflection and symmetry]
 - (a) Write down the coordinates of M' and N'.
 - (b) Find the slope of M'N'.

(4 marks)

Solution. (a) M' = (-6, -11); N' = (2, -5) 1A+1A (b) Slope of M'N' $= \frac{-11-(-5)}{-6-2}$ 1M $= \frac{3}{4}$ 1A

		L

8. In Figure 1, *ABCDE* is a pentagon. AC // ED and AD // BC. It is given that $\angle ABC = \angle AED$ and AB = AE. [plane geometry]



- (a) Prove that $\triangle ABC \cong \triangle AED$.
- (b) If $\angle ABC = 78^{\circ}$ and $\angle DAE = 39^{\circ}$, find $\angle ACD$.

(5 marks) Solution. (a) AB = AE(given) $\angle ABC = \angle AED$ (given) $\angle ACB = \angle CAD$ (alt. \angle s, AC // ED) $\angle ADE = \angle CAD$ (alt. \angle s, AD // BC) 1A (either one) $\therefore \angle ACB = \angle ADE$ $\Delta ABC \cong \Delta AED$ (A.A.S.) 1 (b) $\angle BAC = \angle DAE = 39^{\circ}$ (cor. $\angle s, \cong \Delta$) $\angle ACB = 180^{\circ} - \angle ABC - \angle BAC$ $(\angle \operatorname{sum of} \Delta)$ $\angle ACB = 180^{\circ} - 78^{\circ} - 39^{\circ} = 63^{\circ}$ 1A AC = AD(cor. sides, $\cong \Delta$) $\angle ACD = \angle ADC$ (base $\angle s$, isos. \triangle) 1M $\angle ACB + \angle ACD + \angle ADC = 180^{\circ}$ (int. $\angle s, AD // BC$) $63^{\circ} + 2 \angle ACD = 180^{\circ}$ $\angle ACD = 58.5^{\circ}$ 1A

9. The frequency distribution table and the cumulative frequency distribution table below show the distribution of the time taken to complete a homework by a group of students. [statistics]

Time taken (minutes)	Frequency
40 - 44	а
45 - 49	7
50 - 54	b
55 – 59	5

Time taken less than (minutes)	Cumulative frequency
44.5	5
49.5	x
54.5	у
59.5	30

- (a) Write down the value of *b*.
- (b) Find the mean of the distribution.
- (c) Find the probability that the time taken to complete the homework by a randomly selected student from the group is not less than 49.5 minutes.

(5 marks)

Solu	tion.	
(a)	<i>b</i> = 13	1A
(b)	mean	
	$= \frac{5(42) + 7(47) + 13(52) + 5(57)}{30}$	1 M
	= 50	1A
(c)	Probability	
	$=\frac{30-12}{30}$	1 M
	$=\frac{3}{5}$	1A

SECTION A(2) (35 marks)

- 10. It is given that f(x) is partly constant and partly varies as $(x 2)^2$. Suppose that f(6) = -36 and f(-3) = -63. [variation]
 - (a) Find f(x). (3 marks)
 - (b) Write down the *x*-intercept(s) of the graph of y = 3f(x). (1 mark)
 - (c) Let k be a real constant. Find the range of values of k such that the equation f(x) = k has no real roots. (2 marks)

Solu	tion.	
(a)	Let $f(x) = a(x-2)^2 + b$, where <i>a</i> and <i>b</i> are non-zero constant.	
	$\begin{cases} a(6-2)^2 + b = -36 (1) \\ a(-3-2)^2 + b = -63 (2) \end{cases}$	1M (either)
	(1) – (2),	
	-9a = 27	
	a = -3	
	16(-3) + b = -36	
	<i>b</i> = 12	1A (either one)
	$f(x) = -3(x-2)^2 + 12$	1A
(b)	0, 4	1A
(c)	$f(x) = -3(x-2)^2 + 12$	
	Maximum value of $f(x)$ is 12.	1 M
	When $f(x) = k$ has no real root	
	<i>k</i> > 12	1A

6

11. The stem-and-leaf diagram below shows the distribution of the weights (kg) of the members of a drama club. [statistics]

Stem (tens) Leaf (units) 5 4 6 7 6 0 а 7 7 8 а 7 5 5 5 5 6 8 b b 4 4 8 3

The inter-quartile range and the median of the distribution are 14 kg and 71 kg respectively.

- (a) Find a and b. (3 marks)
- (b) A new member now joins the drama club.
 - (i) Is there any change in the median of the distribution due to the joining of the new member?
 - (ii) If the range of the distribution is increased by 1, find the greatest possible standard deviation of the distribution.

Solu	tion.	
(a)	75 - (60 + a) = 14	1A
	a = 1	1A
	70 + b = 71	
	b = 1	1A
(b)	(i) No	1A -
	(ii) Range increased by 1. Weight of new member must be 53 kg or 84 k	g. 1M
	Standard deviation	
	= 8.52 or 8.45 1A (e	
	Greatest possible standard deviation is 8.52.	1A

7

(4 marks)

- 12. The equation of the circle C is $x^2 + y^2 30x 40y + 369 = 0$. Denote the centre of C by G. The coordinates of the point H are (45, 36). [equations of circles]
 - (a) Find the distance between G and H. (3 marks)
 - (b) Let *P* be a moving point on *C*. When the $\angle GHP$ is the greatest,
 - describe the geometric relationship between *HP* and *GP*;
 - (ii) find the area of ΔGHP .

(i)

(4 marks) Solution. Centre = (15, 20)(a) 1A $GH^2 = (45 - 15)^2 + (36 - 20)^2$ 1**M** GH = 341A (b) (i) *HP* is perpendicular to *GP*. 1A (ii) $GP = \text{radius} = \sqrt{15^2 + 20^2 - 369} = 16$ 1A $HP^2 + GP^2 = GH^2$ HP = 301**A** Area of $\triangle GHP$ <u>16×</u>30 = 2 = 240 1A

- 13. There are three solid metal spheres *X*, *Y* and *Z*. *X* is the smallest while *Z* is the largest. The ratio of the surface areas of *X*, *Y* and *Z* is 1 : 4 : 9. The radius of *X* is 3 cm. [mensuration]
 - (a) Express, in terms of π , the volume of Z.

- (3 marks)
- (b) These three spheres are melted and recast into two solid right circular cones. Denote these two circular cones by *A* and *B*. It is given that the height and the base radius of *A* are 12 cm and 6 cm respectively. A student finds that the base radius of *B* is 12 cm. The student claims that *A* and *B* are similar. Is the claim correct? Explain your answer. (4 marks)

Solution. Ratio of surface areas of X, Y and Z is 1:4:9. (a) Ratio of radii of *X*, *Y* and *Z* is 1 : 2 : 3. Radius of X is 3 cm. Radius of Z is 9 cm. 1A Volume of Z $=\frac{4}{3}\pi(9 \text{ cm})^3$ 1**M** $=972\pi$ cm³ 1ARadius of Y is 6 cm. (b) $\frac{1}{3}\pi(6)^2(12) + \frac{1}{3}\pi(12)^2h = \frac{4}{3}\pi(3)^3 + \frac{4}{3}\pi(6)^3 + 972\pi$ 1M $144\pi + 48\pi h = 36\pi + 288\pi + 972\pi$ h = 24 cm1A Ratio of radius of A to radius of B = 6 cm : 12 cm = 1 : 2Ratio of height of A to height of B = 12 cm : 24 cm = 1 : 2The two ratios are the same. 1**M** Yes, the claim is agreed. 1A

- 14. Let $p(x) = 3x^3 + ax^2 + bx 10$, where *a* and *b* are constants. When p(x) is divided by $x^2 2x + 2$, the remainder is -x 2. [polynomials]
 - (a) Find a and b. (3 marks)
 - (b) Is x 2 a factor of p(x)? Explain your answer. (2 marks)
 - (c) Someone claims that the equation p(x) = 0 has two irrational roots. Do you agree? Explain your answer. (3 marks)

Solu	ition.	
(a)	Let $3x^3 + ax^2 + bx - 10 = (mx + n)(x^2 - 2x + 2) - x - 2$	1M
	$3x^{3} + ax^{2} + bx - 10 = mx^{3} + nx^{2} - 2mx^{2} - 2nx + 2mx + 2n - x - 2$	
	3 = m, a = n - 2m, b = -2n + 2m - 1, -10 = 2n - 2	1A
	m = 3, n = -4, a = -10, b = 13	1A
(b)	$f(2) = 3(2)^3 - 10(2)^2 + 13(2) - 10 = 0$	1M
	(x-2) is a factor of $p(x)$	1A
(c)	$\mathbf{p}(x) = 0$	
	$(x-2)(3x^2 - 4x + 5) = 0$	1A
	$x = 2 \text{ or } 3x^2 - 4x + 5 = 0$	
	$\Delta = (-4)^2 - 4(3)(5) = -44 \le 0$	1M
	There are no real roots for the equation $3x^2 - 4x + 5 = 0$.	
	The claim is disagreed.	1A

SECTION B (35 marks)

15. There are 14 girls and 16 boys in a class. If 4 students are randomly selected from the class to form a debate team, find the probability that [counting and probabilities]

(a)	there are 1 girl and 3 boys in the debate team;	(2 marks)
(b)	the number of girls is not less than the number of boys in the debate team.	(2 marks)
Solu	tion.	
(a)	$\frac{C_1^{14} \times C_3^{16}}{C_4^{14+16}}$	1M
	$=\frac{224}{783}$	1A
(b)	$1 - \frac{224}{783} - \frac{C_0^{14} \times C_4^{16}}{C_4^{14+16}}$	1M
	$=\frac{169}{261}$	1A

- 16. Let $g(x) = 2x^2 + 12kx + 20k^2 + 8$, where k is a non-zero real constant. [quadratic functions and graphs]
 - (a) Using the method of completing the square, express, in terms of k, the coordinates of the vertex of the graph of y = g(x). (2 marks)
 - (b) On the same rectangular coordinates system, denote the vertex of the graph of y = g(x) and the vertex of the graph of y = g(-x) + 3 by *A* and *B* respectively. Let *M* be a point lying on *AB* such that the *x*-coordinate of *M* is *k*.
 - (i) Find the ratio *AM* : *BM*.
 - (ii) Find the y-coordinate of M. (3 marks)

Solution.

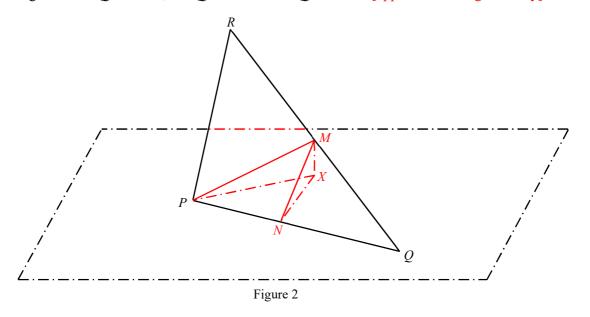
(a)
$$2x^2 + 12kx + 20k^2 + 8$$

 $= 2(x^2 + 6kx) + 20k^2 + 8$
 $= 2(x^2 + 6kx + 9k^2 - 9k^2) + 20k^2 + 8$
 $= 2[(x + 3k)^2 - 9k^2] + 20k^2 + 8$
 $= 2(x + 3k)^2 + 2k^2 + 8$
Vertex = $(-3k, 2k^2 + 8)$
(b) $A = (-3k, 2k^2 + 8), B = (3k, 2k^2 + 11)$
(i) $AM : BM = k - (-3k) : 3k - k = 2 : 1$
(ii) $y = \frac{(2k^2 + 8) + 2(2k^2 + 11)}{2 + 1} = 2k^2 + 10$
1A

5

17.	Let <i>k</i> be a real constant. The roots of the equation $x^2 - kx + 10 = 0$ are α and β . [sequences		
	(a)	Express $(\alpha - \beta)^2$ in terms of k.	(3 marks)
	(b)	The 1st term, the 2nd term and the 3rd term of an arithmetic sequence are (α –	
		121 respectively. Find the least value of <i>n</i> such that the sum of the first <i>n</i> term $n = 106$	
ſ		sequence is greater than 2×10^6 .	(4 marks)
	Solution.		
	(a)	$(\alpha - \beta)^2$	
		$= (\alpha + \beta)^2 - 4\alpha\beta$	1 M
		$=k^2-4(10)$	1A
		$=k^2-40$	1A
	(b)	$d = k^2 - (\alpha - \beta)^2 = 40$	1A
		a = 121 - 2(40) = 41	1A
		Consider	
		$\frac{n}{2} \left[2(41) + (n-1)(40) \right] > 2 \times 10^{6}$	1M
		$41n + 20n(n-1) > 2 \times 10^6$	
		$20n^2 + 21n - 2 \times 10^6 > 0$	ŀ
		<i>n</i> < –316.8 or <i>n</i> > 315.7	ŀ
		The least value of <i>n</i> is 316.	1A

18. In Figure 2, the triangle paper card *PQR* is held such that *PQ* lies on the horizontal ground. It is given that PQ = 30 cm, $\angle PQR = 40^{\circ}$ and $\angle QPR = 95^{\circ}$. [application of trigonometry]



(a) Find the length of QR . (2 mar)	(s)
---------------------------------------	-----

- (b) Let M be the mid-point of QR. Find the length of PM. (2 marks)
- (c) A craftsman finds that the angle between the plane PQR and the horizontal ground is 70°. The craftsman claims that the angle between PM and the horizontal ground exceeds 40°. Is the claim correct? Explain your answer. (3 marks)

Solution.
(a)
$$\frac{QR}{\sin 95^{\circ}} = \frac{30}{\sin(180^{\circ} - 95^{\circ} - 40^{\circ})}$$
 IM
 $QR = 42.26496158 = 42.3 \text{ cm}$ IA
(b) $MQ = \frac{1}{2}QR = 21.13248079$ IM
 $PM^2 = PQ^2 + MQ^2 - 2(PQ)(MQ)\cos 40^{\circ}$ IM
 $PM = 19.37205657 = 19.4 \text{ cm}$ IA
(c) Let N a point on PQ such that $MN \perp PQ$.
 $\sin 40^{\circ} = \frac{MN}{MQ}$ IA
 $MN = 13.58369682$ IA
 $\sin 70^{\circ} = \frac{MX}{MN}$ IA
 $MX = 12.76449966$ IA
 $\sin \angle MPX = \frac{MX}{MP}$
 $\angle MPX = 41.2^{\circ}$
Yes. The claim is agreed. IA

F.6 1

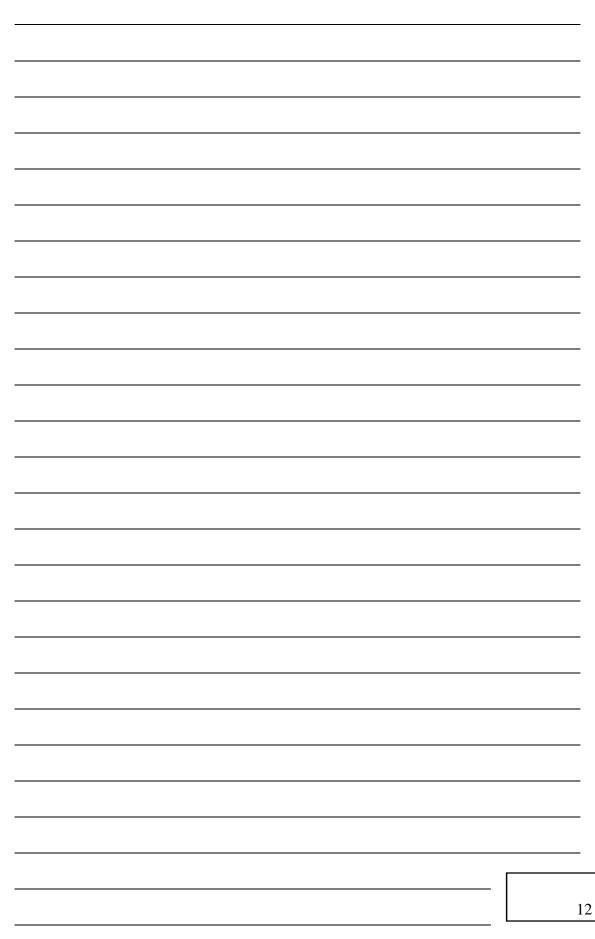
19. The centre of the circle *C* is the point G(83, 112). It is found that the point A(158, 12) lies outside *C*. *AP* and *AQ* are the tangents to *C* at the points *P* and *Q* respectively. It is given that *C* passes through the point (23, 67). [equations of circles]

(a) Find AG.(2 marks)(b) Show that
$$APGQ$$
 is a cyclic quadrilateral. Hence, find the equation of the circumcircle of
 ΔAPQ .(4 marks)

- (c) Find the equation of the straight line passing through P and Q. (4 marks)
- (d) Someone claims that the circumcenter of $\triangle APQ$ lies outside the circle C. Do you agree? Explain your answer. (2 marks)

Solution.
(a)
$$AG^2 = (158 - 83)^2 + (12 - 112)^2$$
 IM
 $AG = 125$ IA
(b) $AP \perp GP$ and $AQ \perp GQ$
 $\angle APG + \angle AQG = 180^\circ$
 $APGQ$ is a cyclic quadrilateral. IA
Note that AG is a diameter of the circumcircle of $\triangle APQ$. IA
Equation of circumcircle of $\triangle APQ$ is
 $\frac{y - 12}{x - 158} \times \frac{y - 112}{x - 83} = -1$ IA
 $x^2 + y^2 - 241x - 124y + 14458 = 0$ IA
(c) Let the intersection of AG and PQ be X .
 $GP = \sqrt{(23 - 83)^2 + (67 - 112)^2} = 75$ IA
 $\frac{Gx}{GP} = \frac{GP}{AG}$
 $GX = \frac{75^2}{125} = 45$ IA
 $X = (\frac{(125 - 45)(83) + 45(158)}{125}, \frac{(125 - 45)(112) + 45(12)}{125}) = (110, 76)$ IA
Equation of PQ is
 $\frac{y - 76}{x - 110} \times \frac{112 - 12}{83 - 158} = -1$
 $3x - 4y - 26 = 0$ IA
(d) Distance of circumcenter of $\triangle APQ$ from G is $\frac{AG}{2} = 62.5$ IA
Radius of $C = GP = 75 > 62.5$
No, the claim is disagreed. IA

(c) Alternative Solution
Radius of
$$C = \sqrt{(23-83)^2 + (67-112)^2} = 75$$
 1A
Equation of C is
 $(x-83)^2 + (y-112)^2 = 75^2$ 1M
 $x^2 + y^2 - 166x - 224y + 13808 = 0$ 1A
Equation of PQ is
 $(x^2 + y^2 - 166x - 224y + 13808) - (x^2 + y^2 - 241x - 124y + 14458) = 0$
 $3x - 4y - 26 = 0$ 1A



END OF PAPER