Methodist College

First Mock Examination, 2022 – 2023

F.6 Mathematics

Paper 2

Name:		Date:	20 October 2022
Class:	Class No.:	Time <u>11:</u>	15 am -12:30 pm (1 ¼ hours)

Solution

INSTRUCTIONS:

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first insert the information required in the spaces provided.
- 2. When told to open this paper, you should check that all the questions are there. Look for the word 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS.** You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
- 6. No marks will be deducted for wrong answers.
- 7. The diagrams in this paper are not necessarily drawn to scale.

Section A

1.
$$\frac{(2a^{6})^{3}}{4a^{2}} =$$
A. $2a^{16}$.
B. $2a^{9}$.
C. $8a^{16}$.
D. $8a^{9}$.

Solution

 $\frac{(2a^6)^3}{4a^2} = \frac{2^3a^{18}}{4a^2} = 2a^{18-2} = 2a^{16}$ The answer is A.

2. If
$$\frac{a}{x} + \frac{b}{y} = 3$$
, then $x =$
A. $\frac{by}{3y-a}$.
B. $\frac{by}{a-3y}$.
C. $\frac{ay}{b-3y}$.
D. $\frac{ay}{3y-b}$.

Solution

$$\frac{a}{x} + \frac{b}{y} = 3$$
$$\frac{ay + bx}{xy} = 3$$
$$ay = 3xy - bx$$
$$x = \frac{ay}{3y - b}$$
The answer is D.

3.
$$\frac{1}{3x+7} - \frac{1}{3x-7} =$$
A.
$$\frac{14}{49-9x^2}$$
B.
$$\frac{14}{9x^2-49}$$
C.
$$\frac{6x}{49-9x^2}$$
D.
$$\frac{6x}{9x^2-49}$$

$$\frac{1}{3x+7} - \frac{1}{3x-7} = \frac{(3x-7) - (3x+7)}{(3x)^2 - 7^2} = \frac{-14}{9x^2 - 49} = \frac{14}{49 - 9x^2}$$

The answer is A.

4.
$$3m^2 - 5mn + 2n^2 + m - n =$$

A. $(m+n)(3m-2n-1)$.
B. $(m+n)(3m+2n-1)$.
C. $(m-n)(3m-2n+1)$.
D. $(m-n)(3m+2n+1)$.

<u>Solution</u>

$$3m^{2} - 5mn + 2n^{2} + m - n = (m - n)(3m - 2n) + (m - n) = (m - n)(3m - 2n + 1)$$

The answer is C.

5. Let *c* be a constant. If $f(x) = x^3 + cx^2 + c$, then f(c) + f(-c) = c

A. 0. B. 2c. C. $2c^3 + 2c$. D. $-2c^3 + 2c$.

Solution

 $f(c) + f(-c) = c^{3} + c(c)^{2} + c + (-c)^{3} + c(-c)^{2} + c = c^{3} + c^{3} + c - c^{3} + c^{3} + c = 2c^{3} + 2c$ The answer is C.

6. Let g(x) = ax³ + 4ax² - 24, where a is a constant. If x + 2 is a factor of g(x), then g(-1) =
A. -27.
B. -15.
C. 0.
D. 12.

Solution

$$g(-2) = 0$$

$$a(-2)^{3} + 4a(-2)^{2} - 24 = 0$$

$$-8a + 16a - 24 = 0$$

$$8a = 24$$

$$a = 3$$

$$g(-1) = 3(-1)^{3} + 12(-1)^{2} - 24 = -15$$

The answer is B.

- 7. If a = 9.23 (correct to 2 decimal places), find the range of value of a.
 - A. $9.22 < a \le 9.24$ B. $9.22 \le a < 9.24$ C. $9.225 < a \le 9.235$ D. $9.225 \le a < 9.235$

The answer is D.

- 8. The monthly salary of Aska is 15% higher than that of Gary while the monthly salary of Gary is 5% lower than that of Ceci. It is given that the monthly salary of Aska is \$97 750. The monthly salary of Ceci is
 - A. \$59 500.
 - B. \$85 000.
 - C. \$89 474.
 - D. \$112 413.

Solution

Let the monthly salary of Aska be \$*A*.

Let the monthly salary of Ceci be \$*C*.

Let the monthly salary of Gary be G.

$$A = 1.15G & \& G = 0.95C$$

 $A = 1.15(0.95C)$
 $A = 1.0925C$
 $97750 = 1.0925C$
 $C = 89474$
The answer is C.

9. In the figure, the equations of the straight lines L_1 and L_2 are ax + y + b = 0 and x + cy - d = 0 respectively. Which of the following are true?

- 10. Which of the following statements about the graph of y = (3 x)(-x + 2) + 6 is/are true?
 - I. The graph opens downwards.
 - II. The graph passes through the point (1, 8).
 - III. The *x*-intercepts of the graph are irrational.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

y = (3 - x)(-x + 2) + 6 $y = x^2 - 5x + 12$ Statement I : Since a = 1, the graph opens upwards. Statement I is incorrect. Statement II : Substitute (1, 8) into $y = x^2 - 5x + 12$, L.H.S. = R.H.S. = 8. Statement II is correct. Statement III : $0 = x^2 - 5x + 12$ $\Delta = (-5)^2 - 4(12) = -23$ $\Delta < 0$ ∴No real roots. Statement III is incorrect. The answer is B.

11. Let a, b and c be non-zero numbers. If 2a = 3b and a: c = 1:4,

then
$$\frac{a+3b}{b+3c} =$$
A.
$$\frac{38}{3}$$
B. 1.
C.
$$\frac{2}{3}$$
D.
$$\frac{9}{38}$$

Solution

$$2a = 3b$$

$$b = \frac{2}{3}a$$

$$a:c = 1:4$$

$$c = 4a$$

$$\frac{a+3b}{b+3c} = \frac{a+3(\frac{2}{3}a)}{(\frac{2}{3}a)+3(4a)} = \frac{9}{38}$$

The answer is D.

12. It is given that *w* varies as the cube of *u* and the square root of *v*. When *u* = 3 and *v* = 16, *w* = 216. When *u* = 2 and *v* = 9, *w* =
A. 48.
B. 108.
C. 288.
D. 342.

Solution

 $w = ku^{3}\sqrt{v}$ $216 = (3)^{3}(\sqrt{16})k$ k = 2 $w = 2(2)^{3}(\sqrt{9})$ w = 48The answer is A.

13. In the figure, the 1st pattern consists of 6 dots. For any positive integer *n*, the $(n + 1)^{\text{th}}$ pattern is formed by adding 4 dots to the n^{th} pattern. Find the number of dots in the 9th pattern.

Solution

The number of dots in the 9^{th} pattern = 6 + 4 (8) = 38.

The answer is C.

14. The solution of 2(1-x) - 10 > -4 or $\frac{7x+3}{3} \ge -6$ is

A. $x \ge -3$. B. x < -2. C. $-3 \le x < -2$. D. all real solution of *x*.

<u>Solution</u>

$$\frac{7x+3}{3} \ge -6 \qquad 2(1-x) - 10 > -4
2 - 2x > 6
7x \ge -21 \qquad \text{or} \qquad -2x > 4
x \ge -3 \qquad x < -2$$

The solution is all real solution of *x*.

The answer is D.

15. The coordinates of the points *A* and *B* are (4, 7) and (-2, -6) respectively. Let *P* be a moving point in the rectangular coordinate plane such that AP = BP. Find the equation of the locus of *P*.

A. 12x + 26y - 25 = 0B. 12x - 26y + 25 = 0C. 26x + 12y - 25 = 0D. 26x - 12y + 25 = 0

Solution

$$AP = BP$$

$$\therefore \qquad \sqrt{(x-4)^2 + (y-7)^2} = \sqrt{(x+2)^2 + (y+6)^2}$$

$$x^2 - 8x + 16 + y^2 - 14y + 49 = x^2 + 4x + 4 + y^2 + 12y + 36$$

$$12x + 26y - 25 = 0$$

The answer is A.

- 16. The mean of 90 integers is 135. If the mean of 40 of these 90 integers is 105, then the mean of the remaining 50 integers is
 - A. 156.
 - B. 159.
 - C. 162.
 - D. 165.

The mean of the remaining 50 integers =
$$\frac{90 \times 135 - 40 \times 105}{50} = 159$$
.

The answer is B.

- 17. If the volume of a right circular cone of base radius 3a cm and height 4b cm is 432 cm^3 , then the volume of a right circular cylinder of base radius 7a cm and height 5b cm is
 - A. 1620 cm^3 .
 - B. 2940 cm³.
 - C. 6370 cm^3 .
 - D. 8820 cm^3 .

Solution

$$\frac{(3a)^2\pi \times 4b}{3} = 432$$
$$a^2b\pi = 36$$

The volume of a right circular cylinder = $(7a)^2 \pi \times 5b = 245 a^2 b \pi = 8820 \text{ cm}^3$.

The answer is D.

18. In the figure, N is a point lying on AC and E is a point lying on DN. If DN = 6 cm and DE = 1 cm, then the area of $\triangle ABC$ is

Solution

CN =
$$\sqrt{10^2 - 6^2} = 8$$

AN = $\sqrt{13^2 - 5^2} = 12$
AB = $\sqrt{20^2 - 16^2} = 12$
∴ The area of $\triangle ABC = \frac{12 \times 16}{2} = 96 \text{ cm}^2$.
The answer is C.

19. In the figure, *ABCD* is a parallelogram and *AEFG* is a square. It is given that BE : EF : FC = 2 : 7 : 3. *BD* cuts *AE* and *FG* at the points *X* and *Y* respectively. If the area of $\triangle ABX$ is 24 cm², then the area of the quadrilateral *CDYF* is

Solution

BE : EF : FC = 2 : 7 : 3 ∴ BE : DA = 2 : 12 = 1 : 6 $\Delta BEX \sim \Delta DAX$ (AAA) ∴ BX : DX = BE : AD = 1 : 6 $\Delta ABX \& \Delta DAX$ share the same height. ∴ Area of $\Delta DAX = 24 \times 6 = 144 \text{ cm}^2$ Area of $\Delta BEX = 144 \div 6^2 = 4 \text{ cm}^2$ $\Delta BEX \sim \Delta BFY$ (AAA) ∴ Area of $\Delta BFY = 4 \times (\frac{9}{2})^2 = 81 \text{ cm}^2$ ∴ The area of the quadrilateral $CDYF = 24 + 144 - 81 = 87 \text{ cm}^2$ The answer is D. 20. In the figure, AB = BC and D is a point lying on AE such that AC = AD. If AE // BC, then $\angle ABC =$

Solution

 $\angle CDA = 56^{\circ} \quad (adj. \ \angle s \text{ on st. line})$ $\angle ACD = 56^{\circ} \quad (base \ \angle s, isos \ \Delta)$ $\angle BCD = 124^{\circ} \quad (alt. \ \angle s, AE \ // BC)$ $\angle BCA = 124^{\circ} - 56^{\circ}$ $= 68^{\circ}$ $\angle BCA = 68^{\circ} \quad (base \ \angle s, isos \ \Delta)$ $\angle ABC = 180^{\circ} - 68^{\circ} - 68^{\circ} \ (\angle sum of \ \Delta)$ $= 44^{\circ}$ The answer is A.

<u>Solution</u>

$$\tan \beta = \frac{AC}{AB}$$
$$AB = \frac{AC}{\tan \beta}$$
$$\sin \alpha = \frac{CD}{AC}$$
$$CD = AC \sin \alpha$$
$$\frac{CD}{AB} = \frac{AC \sin \alpha}{\frac{AC}{\tan \beta}} = \sin \alpha \tan \beta$$
The answer is B.

22. In the figure, *ABCD* is a square. *E* is a point lying on *AB* produced such that BE = 4 cm. *BC* and *DE* intersect at the point *F*. If EF = 5 cm, then DE =

- 23. In the figure, O is the centre of the semi-circle ABCD. If AC = BD and $\angle COD = 56^{\circ}$, then $\angle ABD =$
 - A. 29°.
 - B. 31°.
 - C. 36°.
 - D. 48°.

S - 1		-
Solution		
Let	$x = \angle ABD$.	
Since	AC = BD,	
	$\angle CAB = x$.	
	$\angle CAD = 28^{\circ}$ (\angle at centre twice \angle at \odot^{ce})	
and	$\angle ADB = 90^{\circ}$ (\angle in semi-circle)	
.:.	$x + 28^{\circ} + 90^{\circ} + x = 180^{\circ} \ (\angle \text{ sum of } \Delta)$	
	$\angle ABD = x = 31^{\circ}$	

24. In the figure, *ABC* is a right-angled triangle with $\angle ABC = 90^{\circ}$. Let *D* and *E* be points lying on *AC* and *BC* respectively such that *ABED* is a cyclic quadrilateral. If *AB* = 660 cm, *AD* = 572 cm and *BE* = 275 cm, then *CD* =

Solution

 $\angle EDC = \angle ABC = 90^{\circ} \quad (ext. \ \angle, cyclic quad.)$ $AE = \sqrt{660^{2} + 275^{2}} = 715$ $ED = \sqrt{715^{2} - 572^{2}} = 429$ $\angle BAD = \tan^{-1}(\frac{275}{660}) + \tan^{-1}(\frac{429}{572}) = 59.4898^{\circ}$ $\angle CED = \angle BAD = 59.4898^{\circ} \quad (ext. \ \angle, cyclic quad.)$ $CD = 429 \tan(59.4898^{\circ}) = 728 \text{ cm}$ The answer is D.

- 25. The coordinates of the point *P* are $(3\sqrt{3}, 9)$. *P* is translated downwards by 6 units to the point *Q*. *Q* is then rotated anti-clockwise about the origin through 90° to the point *R*. Find the polar coordinates of *R*.
 - A. $(6, 30^{\circ})$ B. $(6, 120^{\circ})$ C. $(6\sqrt{3}, 30^{\circ})$ D. $(6\sqrt{3}, 120^{\circ})$

$$P(3\sqrt{3}, 9) \rightarrow Q(3\sqrt{3}, 3) \rightarrow R(-3, 3\sqrt{3})$$

$$r = \sqrt{(3)^2 + (3\sqrt{3})^2} = 6$$

$$\theta = 180^\circ - \tan^{-1}(\frac{3\sqrt{3}}{3}) = 120^\circ$$
Therefore, the polar coordinates of *R* is (6, 120°).
The answer is B.

- 26. The equation of the straight line *L* is 8x 3y + 12 = 0. If *P* is a moving point in the rectangular coordinate plane such that the perpendicular distance from *P* to *L* is equal to 6, then the locus of *P* is
 - A. a sector.
 - B. a square.
 - C. a parabola.
 - D. a pair of straight lines.

Solution

The answer is D.

27. The coordinates of the points *G* and *H* are (1, 4) and (5, -8) respectively. A point *P* is moving on a rectangular coordinate plane such that *PG* = *GH*. The equation of the locus of *P* is

A.
$$3x + y - 7 = 0$$
.
B. $x - 3y - 9 = 0$.
C. $x^{2} + y^{2} - 2x - 8y - 143 = 0$.
D. $x^{2} + y^{2} - 10x + 16y - 71 = 0$.

Solution

$$PG = GH$$

 $\therefore \qquad \sqrt{(x-1)^2 + (y-4)^2} = \sqrt{(5-1)^2 + (-8-4)^2}$
 $x^2 + y^2 - 2x - 8y - 143 = 0$
The answer is C.

- 28. The equations of the circles C_1 and C_2 are $x^2 + y^2 + 8x 4y 5 = 0$ and $2x^2 + 2y^2 + 8x - 4y - 5 = 0$ respectively. Let G_1 and G_2 be the centres of C_1 and C_2 respectively. Denote the origin by O. Which of the following is/are true?
 - I. G_1 , G_2 and O are collinear.
 - II. The radii of C_1 and C_2 are equal.
 - III. *O* is equidistant from G_1 and G_2 .
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

Statement I: $G_1(4, -2)$, $G_2(2, -1)$, O(0, 0)Slope of $G_1 O$ = Slope of $G_2 O$ = -0.5 Statement I is correct. Statement II: The radii of $C_1 = \sqrt{(4)^2 + (-2)^2 - (-5)} = 5$ The radii of $C_2 = \sqrt{(2)^2 + (-1)^2 - (-\frac{5}{2})} = \sqrt{7.5}$ Statement II is incorrect. Statement III: $G_1 O = \sqrt{(4)^2 + (2)^2} = \sqrt{20}$ $G_2 O = \sqrt{(2)^2 + (1)^2} = \sqrt{5}$ Statement III is incorrect. The answer is A. 29. Two numbers are randomly drawn at the same time from eight balls numbered 2, 3, 4, 5, 6, 7, 8 and 9 respectively. Find the probability that the two numbers drawn are consecutive integers.

A.
$$\frac{1}{2}$$

B. $\frac{1}{4}$
C. $\frac{2}{9}$
D. $\frac{7}{9}$

Solution

The required probability = $\frac{7}{8C2} = \frac{1}{4}$ The answer is B. 30. Consider the following positive integers:

4 7 8 8 *a b c d*

If the mode and the mean of the above positive integers are 3 and 6 respectively, which of the following must be true?

- I. The median of the above positive integers is 5.5.
- II. The range of the above positive integers is 4.
- III. The inter-quarter range of the above positive integers is 5.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

Solution

Since mode is 3, 3 of a, b, c and d must be 3. Assume a, b, c = 3. The mean = $\frac{4+7+8+8+3+3+3+d}{8} = 6$ d = 12Consider the following positive integers: 3 3 4 7 8 3 8 12 Statement I: The median = $\frac{4+7}{2} = 5.5$ Statement I is correct. Statement II: Range = 12 - 3 = 9Statement II is incorrect. Statement III: IQR = 8 - 3 = 5Statement III is correct. The answer is C.

Section B

31.
$$15 \times 16^{13} + 17 \times 16^{10} + 16^{3} + 18 =$$

- A. E011000000112₁₆.
- B. E0110000001012₁₆.
- C. F011000000112₁₆.
- D. F011000001012₁₆.

Solution

 $15 \times 16^{13} + 17 \times 16^{10} + 16^{3} + 18 = 15 \times 16^{13} + 1 \times 16^{11} + 1 \times 16^{10} + 1 \times 16^{3} + 1 \times 16^{1} + 2 \times 16^{0}$ $= F0110000001012_{16}$

The answer is D.

- 32. If the roots of the equation $4(\log_{\pi} x)^2 3\log_{\pi} x + 1 = \log_{\pi} x$ are α and β , then $\alpha\beta =$
 - A. $\pi^{\frac{1}{4}}$. B. π . C. $\log_{\pi} 1$. D. $\log_{\pi} 10$.

Solution

$$4(\log_{\pi} x)^2 - 4(\log_{\pi} x) + 1 = 0$$

 $\log_{\pi} x = 0.5$ (repeated)

$$\alpha\beta = (\pi^{0.5})(\pi^{0.5})$$
$$\alpha\beta = \pi$$

The answer is B.

33. In the figure, the straight line L shows the relation between $\log_4 x$ and $\log_4 y$. It is given that L passes through the points (5, 5) and (3, 2). If $y = kx^a$, then k =

- 34. Let f(x) be a quadratic function. The figure below may represent the graph of y = f(x) and $\sqrt[h]{1}$
 - A. the graph of y = -f(2x).
 - B. the graph of y = f(-x) + 4.
 - C. the graph of y = -f(x + 4).
 - D. the graph of y = -f(2x) + 4.

Solution

The answer is C.

35. Let $u = \frac{7}{a+i}$ and $v = \frac{7}{a-i}$, where *a* is a real number. Which of the

following must be true?

- I. u + v is a rational number.
- II. The real part of u is equal to the real part of v.

III. The imaginary part of $\frac{1}{u}$ is equal to the imaginary part of $\frac{1}{v}$.

- A. I only
- B. II only
- C. I and III only
- D. II and III only

Solution

Statement I:

$$u + v = \frac{7(a - i) + 7(a + i)}{a^2 + 1} = \frac{14a}{a^2 + 1}$$

 $\frac{14a}{a^2+1}$ is unnecessarily a rational number.

Statement II:

$$u = \frac{7(a-i)}{a^2+1} = \frac{7a}{a^2+1} - \frac{7}{a^2+1}i \quad , \ v = \frac{7(a+i)}{a^2+1} = \frac{7a}{a^2+1} + \frac{7}{a^2+1}i$$

The real part of u = the real part of $v = \frac{7a}{a^2 + 1}$.

Statement III:

$$\frac{1}{u} = \frac{a}{7} + \frac{1}{7}i \quad , \quad \frac{1}{v} = \frac{a}{7} - \frac{1}{7}i$$
$$\frac{1}{7} \neq -\frac{1}{7}$$

The answer is B.

- 36. If the sum of the first *n* terms of a sequence is $6n^2 n$, which of the following is/are true?
 - I. 17 is a term of the sequence.
 - II. The 1^{st} term of the sequence is 5.
 - III. The sequence is a geometric sequence.
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only

Statement I:

$$T(n) = (6n^{2} - n) - [6(n - 1)^{2} - (n - 1)] = 17$$

12 n = 24
n = 2

Statement I is correct.

Statement II:

 $T(1) = 6(1)^2 - 1 = 5$

Statement II is correct.

Statement III:

```
T(n) = (6n^{2} - n) - [6(n - 1)^{2} - (n - 1)]
= 12n - 7
T(3) = 29
\frac{T(3)}{T(2)} = \frac{29}{17}, \quad \frac{T(2)}{T(1)} = \frac{17}{5}
\frac{T(3)}{T(2)} \neq \frac{T(2)}{T(1)}
Statement III is incorrect.
The answer is B.
```

- 37. For $0^{\circ} \le x < 360^{\circ}$, how many roots does the equation $2\sin^2 x 7\cos x = -3$ have?
 - A. 2
 B. 3
 C. 4
 D. 5

$$2\sin^{2} x - 7\cos x = -3$$

$$2(1 - \cos^{2} x) - 7\cos x + 3 = 0$$

$$- 2\cos^{2} x - 7\cos x + 5 = 0$$

$$\cos x = 0.61 \text{ or } \cos x = -4.11 \text{ (rejected)}$$

$$x = 52.5^{\circ}$$

or
$$x = 360^{\circ} - 52.5^{\circ}$$

$$= 307^{\circ}$$

The answer is A.

38. In the figure, *TA* is the tangent to the circle *ABCD* at the point *A*. *CD* produced and *TA* produced meet at the point *E*. It is given that AB = CD, $\angle BAT = 32^{\circ}$ and $\angle AED = 66^{\circ}$. Find $\angle ABC$.

- 39. Find the constant k such that the circle $x^2 + y^2 + 8x 4y + k = 0$ and the straight line 2x + y 9 = 0 intersect at only one point.
 - A. -25
 B. -15
 C. 15
 D. 25

$$\begin{cases} x^{2} + y^{2} + 8x - 4y + k = 0\\ y = 9 - 2x \end{cases}$$
$$x^{2} + (9 - 2x)^{2} + 8x - 4(9 - 2x) + k = 0\\ x^{2} + 81 - 36x + 4x^{2} + 8x - 36 + 8x + k = 0\\ 5x^{2} - 20x + 45 + k = 0\\ \Delta = (-20)^{2} - 4(5)(45 + k) = 0\\ 400 - 900 - 20k = 0\\ k = -25 \end{cases}$$

The answer is A.

- 40. The equation of the three sides of a triangle are 4x + 3y = 24, 4x 3y = 24and x = a, where *a* is a constant. If the *x*-coordinate of the centroid of the triangle is 30, then a =
 - A. 24.
 B. 30.
 C. 42.
 D. 45.

 $\begin{cases} 4x + 3y = 24 \\ 4x - 3y = 24 \end{cases}$ The intersection point is (6,0). x = a is a vertical line and centroid divides the median by ratio 2:1. $\frac{30-6}{a-30} = \frac{2}{1}$ a = 42

The answer is C.

41. In the figure, ABCDEFGH is a rectangular block. Let X be a point lying on DE such that DX = 9 cm. Denote the angle between BX and the plane ABGF by θ . Find $\sin \theta$.

- 42. A queue is formed by 6 boys and 2 girls. If girls must be next to each other, how many different queues can be formed?
 - A. 10080
 - B. 26040
 - C. 30240
 - D. 35280

The required number = $7! \times 2! = 10080$

The answer is A.

43. A box contains 3 white balls, 4 yellow balls and 3 red balls. A boy and a girl take turns to draw one ball randomly from the box with replacement until one of them draws a white ball or a yellow ball. The boy draws a ball first. Find the probability that the girl draws a white ball.

A.	$\frac{9}{91}$
B.	$\frac{3}{28}$
C.	$\frac{10}{17}$
D.	$\frac{17}{20}$

Solution

P (girl draws a white ball in her 1st round) = $\frac{3}{10} \times \frac{3}{10}$ P (girl draws a white ball in her 2nd round) = $\frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}$ P (girl draws a white ball in her 3rd round) = $\frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}$ ∴ The probability that the girl draws a white ball = $\frac{(\frac{3}{10} \times \frac{3}{10})}{1 - (\frac{3}{10} \times \frac{3}{10})} = \frac{9}{91}$ The answer is A.

- 44. In a test, the difference of the test scores and the difference of the standard scores of two students are 40 and 4 respectively. In the test, the standard deviation of the test scores is
 - A. 10 marks.
 - B. 20 marks.
 - C. 36 marks.
 - D. 44 marks.

The difference of the test scores $= x_1 - x_2 = 40$ The difference of the standard scores $= z_1 - z_2 = 4$

$$z_{1} = \frac{x_{1} - \overline{x}}{\sigma}, z_{2} = \frac{x_{2} - \overline{x}}{\sigma}$$

$$z_{1} - z_{2} = \frac{x_{1} - \overline{x}}{\sigma} - \frac{x_{2} - \overline{x}}{\sigma} = 4$$

$$\frac{x_{1} - x_{2}}{\sigma} = 4$$

$$\sigma = 10$$
The answer is A.

- 45. There are 55 terms in an arithmetic sequence. If the variance of the first 5 terms of the sequence is 12, then the variance of the last 5 terms of the sequence is
 - A. 12.
 B. 24.
 C. 132.
 D. 1452.

Solution

The first 5 terms of the sequence have the same common difference as the last 5 terms of the sequence. That means the dispersion of the first 5 terms is the same as the last 5 terms. Therefore, the variance of the last 5 terms of the sequence is 12.

The answer is A.

End of the paper