Marymount Secondary School

Mock Examination 2021 - 2022

Mathematics (Compulsory Part) Paper 2

Secondary 6

Date:24 January 2022Time Allowed:1 hour 15 minutesTotal Marks:45

INSTRUCTIONS

- 1. When told to open this question paper, you should check that all the questions are there. Look for the words 'END OF PAPER' after the question.
- 2. All questions carry equal marks.
- 3. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 4. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 5. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B.

The diagrams in this paper are not necessarily drawn to scale.

Choose the best answer for each question.

Section A

1.
$$9^{444} \cdot 16^{222} =$$

- A. 6⁶⁶⁶.
- B. 6⁸⁸⁸.
- C. 144⁶⁶⁶.
- D. 144⁸⁸⁸.

2. If
$$h = 2 - \frac{4}{k+3}$$
, then $k =$

A.
$$\frac{3h-2}{2-h}$$
.
B. $\frac{2-3h}{2-h}$.
C. $\frac{3h-10}{h-2}$.
D. $\frac{10-3h}{h-2}$.

3.
$$3x + 3y - x^2 + y^2 =$$

A. (x-y)(3-x-y). B. (x+y)(3-x-y). C. (x+y)(3-x+y). D. (x+y)(3+x-y).

4. Simplify
$$\frac{1}{x-1} + \frac{1}{(x-1)(x-2)}$$
.

A.
$$x-1$$

B. $\frac{1}{x-1}$
C. $\frac{1}{x-2}$
D. $\frac{1}{(x-1)(x-2)}$

5. 0.010 305 07 =

- A. 0.01 (correct to 2 significant figures).
- B. 0.0103 (correct to 3 decimal places).
- C. 0.0103 (correct to 4 significant figures).
- D. 0.010 31 (correct to 5 decimal places).
- 6. If a and b are constants such that $n(x-3)^2 2x \equiv 9x^2 + mx(x+2) + 18$, then m =
 - A. 7.
 - B. 1.
 - C. -1.
 - D. -7.

7. If
$$f(x) = 2x^2 + kx - 1$$
 and $f(2) = f\left(\frac{1}{2}\right)$, then $k =$

- A. $-\frac{17}{3}$. B. -5. C. 3. D. $\frac{31}{5}$.
- 8. Let $f(x) = x^3 + ax^2 + 12x$? 7. When f(x) is divided by x 1, the remainder is 3. When f(x) is divided by x + 1, the remainder is
 - A. 23.
 - B. 3.
 - C. –3.
 - D. –23.
- 9. If the base and the height of a right-angled triangle are both increased by x% so that the area of the triangle is increased by 125%, then x =
 - A. 25.
 - B. 50.
 - C. 125.
 - D. 150.

- 10. The solution of 3(2x-1) < 8x 13 or $2x+1 \ge \frac{4x-7}{3}$ is
 - A. x > 5.
 - B. x < 5.
 - C. $x \ge -5$.
 - D. $x \leq -5$.

11. Let *a*, *b* and *c* be non-zero numbers. If 2a = 3b = 4c, then a : b : c =

- A. 2:3:4.
 B. 3:4:6.
 C. 4:3:2.
- D. 6:4:3.
- 12. It is given that z varies directly as x and inversely as y^2 where $y \neq 0$. If x triples and y doubles, find the percentage change in z.
 - A. Decreases by 25%
 - B. Decreases by 75%
 - C. Increases by 25%
 - D. Increases by 75%

А. В.

C.

D.

13. In the figure, the 1st pattern consists of 4 dots. For any positive integer *n*, the (n + 1)th pattern is formed by adding (2n + 4) dots to the *n*th pattern. Find the number of dots in the 7th pattern.

14. Which of the following statements about the graph of $y = -4 - (3 - x)^2$ is true?

- A. The graph passes through the origin.
- B. The graph opens upwards.
- C. The graph does not cut the *x*-axis.
- D. The *y*-intercept of the graph is -4.

- 15. In the figure, there is water of 180 cm³ in a right circular conical paper cup which is held vertically. It is given that the height of the paper cup and the depth of water are *h* cm and $\frac{2}{5}h$ cm respectively. How much more water is required to fully fill the paper cup?
 - A. 945 cm³
 - B. 1 125 cm³
 - C. $2 632.5 \text{ cm}^3$
 - D. 2 812.5 cm³

16. In the figure, a rectangle *ABGH* is divided into 3 rectangles *ABCD*, *CDEF* and *EFGH* such that AD : DE : EH = 1 : 2 : 3. *AG* cuts *CD* and *EF* at *P* and *Q* respectively. Find the ratio of the area of the quadrilateral *EQGH* to the area of the quadrilateral *ABCP*.

17. In the figure, a solid consists of a right cylinder and a hemisphere with a common base. The radius of the hemisphere is 6 cm and the volume of the solid is 432π cm³. Find the total surface area of the solid.

A. $96\pi \,\mathrm{cm}^2$

- B. $168\pi \,\mathrm{cm}^2$
- C. $204\pi \,\mathrm{cm}^2$
- D. 240π cm²

- 18. In the figure, *A*, *B*, *C*, and *D* are four points lying on the circle. It is given that AB = AD = 5 cm and $\angle BAD = 138^{\circ}$. If *ABCD* is a kite, find the area of the circle, correct to 2 decimal places.
 - A. 78.54 cm^2
 - B. 133.25 cm^2
 - C. 152.89 cm^2
 - D. 611.55 cm^2

- 19. In the figure, *ABCD* is a rectangle. *E*, *F* and *G* are the points lying on *AB*, *CD* and *AD* respectively, such that AG = DG = BE and AE = BC = DF. *P* is a point lying on *AB* such that *FP* bisects $\angle CFG$. *CE* and *FP* intersect at *H*. Find $\angle EHF$ correct to the nearest degree.
 - A. 103°
 - B. 117°
 - C. 122°
 - D. 140°

- 20. *ABC* is a circle. Let *D* be the mid-point of *AB*. If AD = AC and $\angle ACB = 90^{\circ}$, which of the following are true?
 - I. $\triangle BCD$ is an isosceles triangle
 - II. $BC = \sqrt{3}AC$
 - III. $\triangle ADC \sim \triangle CDB$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 21. In the figure, *O* is the centre of the semicircle *ABCD*. If $\overrightarrow{AB} = \overrightarrow{CD}$ and $\angle BCD = 110^\circ$, then $\angle OBC =$
 - A. 20°.
 - B. 40°.
 - C. 55°.
 - D. 70°.

Q

R

22. In the figure, *O* is the centre of the circle *ABQCD*. $\triangle PQR$ intersects the circle at *A*, *B*, *Q*, *C* and *D*. If $\angle POR = 130^{\circ}$ and AD = BQ = CQ, then $\angle PQR =$

- A. 65° .

 B. 70° .

 C. 75° .

 D. 80° .
- 23. M(3, -2) is reflected about the *x*-axis to *N*. Which of the following transformations of *M* also can give *N*?
 - I. Rotated 90° anticlockwise about the origin.
 - II. Translated 6 units to the left.
 - III. Translated 4 units upwards.
 - IV. Translated 2 units downwards and then reflected about the line y = -1.
 - A. I and II only
 - B. I and III only
 - C. II and IV only
 - D. III and IV only

24. In the figure, if $\angle ABC = \angle ADB = \angle BCD = 90^\circ$, then $\frac{AD}{BC} =$

- 25. The straight line 2x + 3y 6 = 0
 - I. is parallel to the line 2x + 3y 12 = 0.
 - II. is perpendicular to the line 2x 3y 6 = 0.
 - III. is perpendicular to the line 2x + 3y 6 = 0.
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only
- 26. C_1 and C_2 are two concentric circles. P(3, -5) and Q(7, 1) are points on C_1 such that PQ is a diameter of C_1 . If *RS* is a diameter of C_2 , which of the following may be the coordinates of *R* and *S*?
 - A. R(4, -2) and S(6, 6)
 - B. R(0, -1) and S(10, -3)
 - C. R(-1, 1) and S(5, 5)
 - D. R(-4, -7) and S(0, 1)
- 27. The coordinates of the points *X* and *Y* are (0, 5) and (1, 0) respectively. Let *P* be a moving point in the rectangular coordinate plane such that PX = 2PY. Find the equation of the locus of *P*.
 - A. 3x 15y + 23 = 0
 - B. 3x + 15y 27 = 0
 - C. $3x^2 + 3y^2 8x + 10y 21 = 0$
 - D. $x^2 + y^2 4x + 10y 23 = 0$

- 28. Mrs. Lee has four children. Find the probability that the eldest one is a girl and the rest are boys.
 - $\frac{1}{8}$ $\frac{3}{8}$ A. Β. $\frac{1}{16}$ C. $\frac{7}{16}$ D.
- The frequency curves below show the distributions of three sets of data. Arrange them 29. according to their standard deviation in ascending order.

A.

- III < I < IID.
- 30. The table shows the distribution of the numbers printed on 20 cards in a box.

Number printed on the card	<i>x</i> – 3	<i>x</i> – 1	x	<i>x</i> + 5
Frequency	6	5	7	2

If the median of the numbers is *a*, then the mean of the numbers is

A. a - 0.65. Β. *a* . C. a + 0.35.

D. *a* + 1.

Section **B**

- 31. The H.C.F. and the L.C.M. of three expressions are a^3b^2c and $a^5b^6c^7$ respectively. If the first expression and the second expression are $a^3b^2c^4$ and $a^3b^4c^7$ respectively, then the third expression is
 - A. $a^{5}b^{4}c$. B. $a^{2}b^{4}c^{2}$. C. $a^{5}b^{6}c$.
 - D. $a^3b^3c^7$.

32. $8^5 + 8^{13} =$

- A. 100000100₁₆.
- B. 80000800₁₆.
- C. 1000001000₁₆.
- D. 800008000₁₆.

33. It is given that a > b > 0. If $\log(a^2 - b^2) = 8$ and $\log(a - b) = 3$, then $\log \frac{1}{\sqrt[3]{(a+b)^2}} =$

A.
$$5^{-\frac{2}{3}}$$
.
B. $\left(\frac{8}{3}\right)^{-\frac{2}{3}}$.
C. $\left(\frac{3}{8}\right)^{\frac{3}{2}}$.
D. $-\frac{10}{3}$.

34. It is given that $\log_4 y$ is a linear function of $\log_2 x$. The graph of the linear function cuts the vertical axis at *A* and the horizontal axis at *B*. Denote the origin by *O*. If $y = \frac{64}{x^3}$, find the area of $\triangle OAB$.

- A. 3
- B. 6
- C. 32
- D. 64

35. If k and $\frac{5k}{1+2i} - 4i$ are real numbers, then k =

- A. -5. B. -2. C. 2.
- D. 5.
- 36. Let x_n be the *n*th term of an arithmetic sequence and S_n be the sum of the first *n* terms of the sequence. If $x_2 = -86$ and $x_3 = -78$, find the minimum value of S_n .
 - A. 13 B. 12 C. -600D. $-\frac{2401}{4}$
- 37. Let p be a constant. Find the range of values of p such that $2x^2 + px + p + 6 \ge 0$ for any real number x.
 - A. $-12 \le p \le 4$ B. $-4 \le p \le 12$ C. $p \le -12$ or $p \ge 4$ D. $p \le -4$ or $p \ge 12$
- 38. The figure shows the rectangle ABCD, where AB = 600 cm and BC = 382 cm. Let *E*, *F* and *G* be points lying on *AB*, *BC* and *CD* respectively such that AE = 350 cm, BF = 100 cm and CG = 450 cm. Denote the point of intersection of *AF* and *EG* by *H*. Find *HF* correct to the nearest cm.
 - Ε R A A. 281 cm Β. 282 cm Η C. 283 cm 284 cm D. F CD G

- 39. In the figure, *BE* is a diameter of the circle *ABCDE*. *BE* bisects *AC* at *M*. *EB* is produced to *T* such that *AT* is the tangent to the circle at *A*. If $\angle ABD = 80^{\circ}$ and $\angle CAD = 38^{\circ}$, find $\angle BAT$.
 - A. 26°
 - B. 28°
 - C. 29°
 - D. 31°

- 40. Let *k* be a real constant. It is given that the circle $x^2 + y^2 2x + 8y + k = 0$ and the straight line x + y + 1 = 0 intersect at two points *P* and *Q*. Find the coordinates of the mid-point of *PQ*.
 - A. (2, 3)
 - B. (2, -3)
 - C. (3, 2)
 - D. (3, -2)
- 41. Let *O* be the origin. *A* and *B* be the points (-8, k) and (2, -6) respectively, where k < 0. Which of the following must be true?
 - I. The y-coordinate of the orthocenter of $\triangle OAB$ is $\frac{80+30k}{24-k}$.
 - II. The *y*-coordinate of the circumcentre of $\triangle OAB$ is $\frac{k^2 + 224}{2k 48}$.

III. The y-coordinate of the centroid of $\triangle OAB$ is $\frac{k-6}{3}$.

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- 42. A committee is formed by 25 students and 10 teachers. If 8 members are selected from the committee to form a choir consisting of at least 5 students, how many different choirs can be formed?
 - A. 6 375 600
 - B. 20 233 675
 - C. 45 904 320
 - D. 79 695 000
- 43. James has 6 different photos and 8 different video clips on his computer. He selects 7 of the computer files, including at least 3 photos, and opens them one by one. Find the probability of all selected photos are opened consecutively.

A.
$$\frac{94}{1001}$$

B. $\frac{85}{2066}$
C. $\frac{133}{5040}$
D. $\frac{32}{163}$

- 44. In an examination, the mean of the examination scores is 45 marks. A girl gets 66 marks in the examination and her standard score is 3. If the standard score of a boy in the examination is -5, then his examination score is
 - A. 0 mark.
 - B. 10 marks.
 - C. 40 marks.
 - D. 90 marks.

- 45. Let m_1, r_1 and v_1 be the mean, the range and the variance of a group of numbers $\{a, b, c, d, e, f\}$ respectively. It is given that $m_1 = c$. If m_2, r_2 and v_2 are the mean, the range and the variance of the group of numbers $\{a, b, d, e, f\}$ respectively, which of the following must be true?
 - I. $m_2 = c$
 - II. $r_2 = r_1$
 - III. $v_2 < v_1$
 - A. I only
 - B. II only
 - C. I and II only
 - D. II and III only

- END OF PAPER -