2021-22 S6 Mock Exam Paper 2 Solution

1. B

$$9^{444} \cdot 16^{222} = (3^2)^{444} \cdot (2^4)^{222}$$

 $= 3^{888} \cdot 2^{888}$
 $= 6^{888}$

2. A
$$h = 2 - \frac{4}{k+3}$$
$$\frac{4}{k+3} = 2 - h$$
$$k+3 = \frac{4}{2-h}$$
$$k = \frac{4-3(2-h)}{2-h}$$
$$= \frac{3h-2}{2-h}$$

3. C

$$3x + 3y - x^{2} + y^{2}$$

$$= 3(x + y) - (x^{2} - y^{2})$$

$$= 3(x + y) - (x - y)(x + y)$$

$$= (x + y)[3 - (x - y)]$$

$$= (x + y)(3 - x + y)$$

4. C
$$\frac{1}{x-1} + \frac{1}{(x-1)(x-2)} = \frac{(x-2)+1}{(x-1)(x-2)}$$

$$= \frac{x-1}{(x-1)(x-2)}$$

$$= \frac{1}{x-2}$$

5. D

	Significant figure(s)	Decimal place(s)
2	0.010	0.01
3	0.0103	0.010
4	0.010 31	0.0103
5	0.010 305	0.010 31

L.H.S.

$$= n(x-3)^{2} - 2x$$

$$= n(x^{2} - 6x + 9) - 2x$$

$$= nx^{2} - 6nx + 9n - 2x$$

$$= nx^{2} - (6n + 2)x + 9n$$

R.H.S.

$$= 9x^{2} + mx(x+2) + 18$$
$$= 9x^{2} + mx^{2} + 2mx + 18$$
$$= (9+m)x^{2} + 2mx + 18$$

$$nx^{2} - (6n+2)x + 9n \equiv (9+m)x^{2} + 2mx + 18$$

By comparing the coefficients of x^2 and the constant term, we have

$$\begin{cases} n = 9 + m & \dots & (1) \\ 9n = 18 & \dots & (2) \end{cases}$$

By substituting (1) into (2), we have

$$9(9+m)=18$$

$$9 + m = 2$$

$$m = \underline{-7}$$

Alternative method:

Sub.
$$x = 3$$
,

$$n(3-3)^{2} - 2(3) = 9(3)^{2} + m(3)(3+2) + 18$$
$$-6 = 81 + 15m + 18$$
$$m = -7$$

7. B

$$f(2) = f\left(\frac{1}{2}\right)$$

$$2(2)^{2} + 2k - 1 = 2\left(\frac{1}{2}\right)^{2} + \frac{1}{2}k - 1$$

$$8 + 2k = \frac{1}{2} + \frac{1}{2}k$$

$$16 + 4k = 1 + k$$

$$3k = -15$$

$$k = -5$$

8. D

By the remainder theorem,

$$f(1) = 3$$

$$(1)^3 + a(1)^2 + 12(1) - 7 = 3$$

 $1 + a + 12 - 7 = 3$

$$a = -3$$

$$f(x) = x^3 - 3x^2 + 12x - 7$$

When f(x) is divided by x + 1,

remainder = f(-1)

$$= (-1)^3 - 3(-1)^2 + 12(-1) - 7$$
$$= -1 - 3 - 12 - 7$$

$$= -23$$

9. B

Let *b* and *h* be the base and the height of the original triangle respectively. Then, new base = b(1+x%) and new height = h(1+x%)

$$\frac{bh}{2} \times (1+125\%) = \frac{b(1+x\%) \times h(1+x\%)}{2}$$

$$2.25 = (1 + x\%)^2$$

$$1 + x\% = 1.5$$

$$x = \underline{\underline{50}}$$

10. C

$$3(2x-1) < 8x-13$$

$$6x - 3 < 8x - 13$$

$$-2x < -10$$

$$2x+1 \ge \frac{4x-7}{3}$$

$$6x + 3 \ge 4x - 7$$

$$2x \ge -10$$

$$x \ge -5$$

$$\therefore$$
 $x > 5$ or $x \ge -5$

$$\therefore$$
 $x \ge -5$

11. D

$$2a = 3b$$

$$\frac{a}{1} = \frac{3}{2}$$

$$3b = 4c$$

$$\frac{b}{c} = \frac{4}{3}$$

$$a: b = 3 : 2 b: c = 4 :$$

Alternative method:

Let
$$2a = 3b = 4c = 12k$$
,

then
$$a = 6k$$
, $b = 4k$ and $c = 3k$

$$\therefore a:b:c=6:4:3$$

12. A

Let $z = \frac{kx}{y^2}$, where *k* is a non-zero constant.

Let x_1 and y_1 be the original values of x and y respectively.

Original value of
$$z = \frac{kx_1}{y_1^2}$$

New value of $x = 3x_1$

New value of $y = 2y_1$

New value of
$$z = \frac{k(3x_1)}{(2y_1)^2}$$

= $\frac{3kx_1}{4y_1^2}$

$$\therefore \text{ Percentage change in } z = \frac{\frac{3kx_1}{4y_1^2} - \frac{kx_1}{y_1^2}}{\frac{kx_1}{y_1^2}} \times 100\%$$

$$= \frac{\frac{kx_1}{y_1^2} (\frac{3}{4} - 1)}{\frac{kx_1}{y_1^2}} \times 100\%$$

$$= -25\%$$

13. D

By observing the patterns, we know that

$$T(n) = (n+1)^2 + (n-1)$$

$$T(7) = (7+1)^{2} + (7-1)$$
$$= 64+6$$
$$= 70$$

Alternative solution:

$$T(2) = T(1) + [2(1)+4] = 4 + 6 = 10,$$

$$T(3) = T(2) + [2(2)+4] = 10 + 8 = 18,$$

$$T(4) = T(3) + [2(3)+4] = 18 + 10 = 28,$$

$$T(5) = T(4) + [2(4)+4] = 28 + 12 = 40,$$

$$T(6) = T(5) + [2(5)+4] = 40 + 14 = 54,$$

 $T(7) = T(6) + [2(6)+4] = 54 + 16 = 70.$

i.e.
$$T(7) = 4 + 6 + 8 + 10 + 12 + 14 + 16 = \frac{(4+16)\times7}{2} = 70$$

14. C

$$y = -4 - (3 - x)^2$$

= -x² + 6x - 13

For option A:

Put
$$x = 0$$
 into $y = -x^2 + 6x - 13$,

$$y = -0^2 + 6(0) - 13 = -13 \neq 0$$

- ∴ The graph does not pass through the origin.
- ∴ A is not true.

For option B:

Coefficient of $x^2 = -1 < 0$

- ∴ The graph opens downwards.
- ∴ B is not true.

For option C:

$$\Delta = 6^2 - 4(-1)(-13)$$

= -16

- < 0
- \therefore The graph does not cut the *x*-axis.
- ∴ C is true.

For option D:

y-intercept of the graph is -13.

∴ D is not true.

15. C

Let $V \text{ cm}^3$ be the capacity of the paper cup.

$$\frac{V}{180} = \left(\frac{h}{\frac{2}{5}h}\right)^3$$

$$\frac{V}{180} = \left(\frac{5}{2}\right)^3$$

$$V = 180 \times \frac{125}{8}$$

$$= 2812.5$$

Required volume of water

$$= (2812.5 - 180) \text{ cm}^3$$

$$= 2 632.5 \text{ cm}^3$$

16.

D

Let AD = h, DE = 2h and EH = 3h, where h is a positive constant.

 \therefore $\triangle ADP \sim \triangle AEQ \sim \triangle AHG$ (AAA)

:. DP : EQ : HG = 1 : 3 : 6

Let DP = k, EQ = 3k and HG = 6k, where k is a positive constant.

Area of quadrilateral EQGH: Area of quadrilateral ABCP

$$= \frac{1}{2}(3k+6k)(3h) : \frac{1}{2}[(6k-k)+6k](h)$$

= 27 : 11

17.

C

Let h cm be the height of the cylinder.

$$\frac{1}{2} \times \frac{4}{3}\pi(6)^3 + \pi(6)^2 h = 432\pi$$
$$36h = 288$$
$$h = 8$$

Total surface area =
$$\left[\frac{1}{2} \times 4\pi(6)^2 + 2\pi(6)(8) + \pi(6)^2\right] \text{ cm}^2$$

= $204\pi \text{ cm}^2$

18.

C

: ABCD is a kite.

∴
$$\angle ABC = \angle ADC$$
 and AC bisects $\angle BAD$
 $\angle ABC + \angle ADC = 180^{\circ}$ (opp. $\angle s$, cyclic quad.)
 $\angle ABC = 90^{\circ}$

 \therefore AC is a diameter of the circle.

(converse of \angle in semicircle)

In $\triangle ABC$,

$$\frac{5 \text{ cm}}{AC} = \cos \frac{138^{\circ}}{2}$$

$$AC \approx 13.9521 \text{ cm}$$

Area of the circle =
$$\left(\frac{AC}{2}\right)^2 \pi$$

= 152.89 cm² (cor. to 2 d. p.)

. D

:
$$AG = DG = BE$$
, $AE = BC = DF$
 $\angle EAG = \angle FDG = \angle CBE = 90^{\circ}$ (property of rectangle)

 $\therefore \Delta AGE \cong \Delta DGF \cong \Delta BEC$ (SAS)

and DF = 2DG

$$\tan \angle DFG = \frac{DG}{DF} = \frac{1}{2}$$

$$\angle DFG \approx 26.5651^{\circ}$$

$$\angle BCE = \angle DFG \approx 26.5651^{\circ} (corr. \angle s, \cong \Delta s)$$

$$\angle ECF = 90^{\circ} - \angle BCE$$

$$\angle CFG + \angle DFG = 180^{\circ}$$
 (adj. $\angle s$ on st. line)

$$\angle CFH = \frac{\angle CFG}{2} \approx 76.7175^{\circ}$$

In $\triangle CFH$,

$$\angle EHF = \angle CFH + \angle ECF \ (ext. \angle of \Delta)$$

= 140° (cor. to the nearest degree)

20. A

II.
$$BC = \sqrt{3}AC \checkmark + \alpha n 30° = \frac{AC}{BC}$$

III.
$$\triangle ADC \sim \triangle CDB \propto BC = \sqrt{3} AC$$

- I and II only A.
- В. I and III only
- C. II and III only
- D. I, II and III

21. В

22.

23.

D

M(3,-2) is reflected about the x-axis to N(3,2).

For I,

the point after rotation is (2,3).

:. I is not true.

For II,

the point after translation is (3-6,-2)=(-3,-2).

:. II is not true.

For III,

the point after translation is (3, -2 + 4) = (3, 2).

:. III is true.

For IV,

the point after translation is (3, -2 - 2) = (3, -4), and then the point after reflection is (3, 2).

:. IV is true.

24. A

A.
$$\frac{1}{\sin \theta}$$

B.
$$\sin \theta$$

C.
$$\sin\theta\tan\theta$$

D.
$$\frac{\cos^2 \theta}{\sin \theta}$$

$$tan 6 = \frac{Bb}{Ab}$$

$$AD = \frac{BD}{tand}$$

$$\cos \theta = \frac{BC}{BD}$$

$$BC = \cos BD$$

$$= \frac{Bt}{fano} \times \frac{1}{cso.Bb}$$

$$= \frac{1}{sino}$$

25.

A

The slope of 2x+3y-6=0 is $-\frac{2}{3}$.

The slope of 2x + 3y - 12 = 0 is $-\frac{2}{3}$.

The slope of 2x-3y-6=0 is $-\frac{2}{-3}=\frac{2}{3}$.

The slope of 3x + 2y - 6 = 0 is $-\frac{3}{2}$.

Since the first two lines have the same slope, they are parallel, i.e. I is correct.

On the other hand, since $-\frac{2}{3} \times \frac{2}{3} \neq -1$ and

 $-\frac{2}{3} \times \left(-\frac{3}{2}\right) \neq -1$, II and III are not correct.

26.

В

Mid-point of
$$PQ = \left(\frac{3+7}{2}, \frac{-5+1}{2}\right) = (5, -2)$$

Centre of C_1 = Centre of C_2 = (5, -2)

For A,

mid-point of
$$RS = \left(\frac{4+6}{2}, \frac{-2+6}{2}\right) = (5,2)$$

:. A is not true.

For B,

mid-point of
$$RS = \left(\frac{0+10}{2}, \frac{-1+(-3)}{2}\right) = (5,-2)$$

:. B may be true.

For C,

mid-point of
$$RS = \left(\frac{-1+5}{2}, \frac{1+5}{2}\right) = (2,3)$$

:. C is not true.

For D,

mid-point of
$$RS = \left(\frac{-4+0}{2}, \frac{-7+1}{2}\right) = (-2, -3)$$

.. D is not true.

27. C
$$PX = 2PY$$

$$\sqrt{(x-0)^2 + (y-5)^2} = 2\sqrt{(x-1)^2 + (y-0)^2}$$

$$x^2 + y^2 - 10y + 25 = 4(x^2 - 2x + 1 + y^2)$$

$$x^2 + y^2 - 10y + 25 = 4x^2 - 8x + 4 + 4y^2$$

$$3x^2 + 3y^2 - 8x + 10y - 21 = 0$$

28.

C

P (1st one is a girl and rest are boys)

= P(1st one is a girl)

×P(2nd one is a boy)

×P(3th one is a boy)

×P(4th one is a boy)

=
$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

1

29. C

: The shape of II is the narrowest and the shape of I is the widest.

:. The standard deviation of II is the least and that of I is the greatest.

30.
C
Median =
$$x - 1 = a$$

 $\therefore x = a + 1$
Mean = $\frac{6(x - 3) + 5(x - 1) + 7(x) + 2(x + 5)}{20}$
= $\frac{6(a + 1 - 3) + 5(a + 1 - 1) + 7(a + 1) + 2(a + 1 + 5)}{20}$
= $\frac{20a + 7}{20}$
= $a + 0.35$

Section B

Section	\mathbf{B}
31.	First expression = $a^3b^2c^4$
C	Second expression = $a^3b^4c^7$
	Third expression = a^5b^6c
	Third expression – $u \ v \ c$
32.	$8^5 + 8^{13}$
D D	
שו	$=(2^3)^5+(2^3)^{13}$
	$=2^{3+4\times3}+2^{3+4\times9}$
	$=2^3 \times 16^3 + 2^3 \times 16^9$
	$=8000008000_{16}$
	- 000000000 ₁₆
22	. (2 -2) -
33. D	$\log\left(a^2-b^2\right)=8$
ט	$\log \lceil (a-b)(a+b) \rceil = 8$
	$\log(a-b) + \log(a+b) = 8$
	$\log(a+b)=5$
	1
	$\log \frac{1}{\sqrt{1-2}}$
	$\log \frac{1}{\sqrt[3]{(a+b)^2}}$ $= \log (a+b)^{-\frac{2}{3}}$
	$\log(a+b)^{\frac{2}{3}}$
	$=\log(a+b)$
	$=-\frac{2}{3}\log(a+b)$
	$3^{\log(\alpha+\delta)}$
	$-\frac{2}{(5)}$
	$=-\frac{2}{3}(5)$
	$=-\frac{10}{3}$
	$=-\frac{1}{3}$
34.	$\log_4 y = \log_4 64 - 3\log_4 x$
A	
	$\log_4 y = 3 - \frac{\log_2 x}{\log_2 4}$
	$\log_4 y = 3 - \frac{3}{2} \log_2 x \qquad \dots (1)$
	The intercept on the vertical axis $= 3$
	Sub. $\log_4 y = 0$ into (1), we have $\log_2 x = 2$
	So, area = $\frac{1}{2}(2)(3) = 3$
	<u>~</u>

35.	$\frac{5k}{1+2i}-4i$
В	
	$= \frac{5k}{1+2i} \times \frac{1-2i}{1-2i} - 4i$
	$=\frac{5k\left(1-2i\right)}{5}-4i$
	=k-2ki-4i
	=k-2(k+2)i
	As $\frac{5k}{1+2i}$ – 4 <i>i</i> is a real number,
	$\begin{vmatrix} 1+2i \\ k+2=0 \end{vmatrix}$
	k = -2
36.	a = -94
C	d = -86 - (-94) = 8
	T(n) = a + (n-1)d
	= -94 + (n-1)(8)
	=8n-102
	Let $T(m)$ be the largest negative term in the sequence.
	T(m) < 0
	8m-102 < 0
	8m < 102
	m < 12.75
	There are 12 negative terms in the sequence.
	The minimum value of $S(k)$ = Sum of the first 12 terms of the sequence
	$S(12) = \frac{12}{2} [-94 + (-6)] = -600$
	So the minimum value of $S(k)$ is -600
37.	$\Delta \leq 0$
В	$p^2 - 4(2)(p+6) \le 0$
	$p^2 - 8p - 48 \le 0$
	$(p+4)(p-12) \le 0$
	$\therefore -4 \le p \le 12$

```
We put the figure to the rectangular coordinates plan such that
38.
В
            A(0,382), E(350,382), F(600,382), G(150,0) and D(0,0)
           Equation of AF:
           \frac{y-382}{x-0} = \frac{282-382}{600-0} = \frac{-1}{6}
                          6y - 2292 = -x
                              x + 6y = 2292
                                                    ...(1)
           Equation of EG:
           \frac{y-382}{x-350} = \frac{0-382}{150-350} = \frac{191}{100}
                     100y - 38200 = 191x
                      191x - 100y = 28650
                                                    ...(2)
          By solving (1), (2), \begin{cases} x \approx 321.9101124 \\ y \approx 328.3483146 \end{cases}
           So,
            HF
            \approx \sqrt{\left(321.9101124 - 600\right)^2 + \left(328.3483146 - 282\right)^2}
            ≈ 281.9257914
39.
D
                                                              (given)
            AM = MC
                                                              (line joining centre and mid-pt. of chord ⊥ chord)
            :. AC ⊥ EM
            ∴ ∠CME = 90°
                                                              (\( \text{in alt. segment} \)
                           \angle BEA = \angle BAT
                                                             (ext. \angle of \Delta)
            \angle MEA + \angle MAE = \angle CME
             \angle BAT + \angle MAE = 90^{\circ}
                         \angle MAE = 90^{\circ} - \angle BAT
                                                               (∠in semi-circle)
                          \angle BAE = 90^{\circ}
            \angle BAC + (90^{\circ} - \angle BAT) = 90^{\circ}
                                   \angle BAC = \angle BAT
                                                               (∠in alt. segment)
                                  \angle BDA = \angle BAT
            In \triangle ABD,
                                                                   (\angle sum \ of \Delta)
                  \angle ABD + \angle BDA + \angle BAD = 180^{\circ}
            80^{\circ} + \angle BAT + (38^{\circ} + \angle BAT) = 180^{\circ}
                                          2\angle BAT = 62^{\circ}
                                          \angle BAT = 31^{\circ}
```

40. B

$$\begin{cases} x^2 + y^2 - 2x + 8y + k = 0...(1) \\ x + y + 1 = 0...(2) \end{cases}$$

From (2),

$$x = -(y+1)...(3)$$

Sub (3) into (1),

$$(y+1)^2 + y^2 + 2(y+1) + 8y + k = 0$$

$$2y^2 + 12y + (k+3) = 0...(4)$$

y-coordinate of the mid-point of $PQ = \frac{sum\ of\ roots\ of\ (4)}{2}$

$$=\frac{-\frac{12}{2}}{2}$$
$$=-3$$

Sub y = -3 into (3)

 \therefore The coordinates of M are (2, -3).

41. D

For I:

Slope of OB = -3

Equation of line $\perp OB$ passes via A:

$$y-k=\frac{1}{3}(x+8)$$

$$3y - 3k - 8 = x$$
 ...(1)

Slope of
$$OA = -\frac{k}{8}$$

Equation of line $\perp OA$ passes via B:

$$y+6=\frac{8}{k}(x-2)$$

$$\frac{ky+6k+16}{8} = x$$
 ...(2)

$$(1) - (2)$$
:

$$y = \frac{80 + 20k}{24 - k}$$

:. The y-coordinate of the orthocentre of $\triangle OAB$ is $\frac{80+30k}{24-k}$.

: I is correct.

	For II:
	mid-pt of $OB = (1, -3)$
	Equation of line $\perp OB$ passes via mid-pt of OB :
	$y+3=\frac{1}{3}(x-1)$
	$3y+10=x \qquad \dots (3)$
	mid-pt of $OB = (-4, \frac{k}{2})$
	Equation of line $\perp OA$ passes via mid-pt of OA :
	$y - \frac{k}{2} = \frac{8}{k}(x+4)$
	$\frac{2ky - k^2 - 64}{16} = x \qquad \dots (4)$
	(3) – (4):
	$y = \frac{k^2 + 224}{2k - 48}$
	\therefore The y-coordinate of the circumcentre of $\triangle OAB$ is $\frac{k^2 + 224}{2k + 48}$.
	∴ II is correct.
	For III:
	The y-coordinate of the centroid of $\triangle OAB = \frac{k + (-6) + 0}{3}$
	$= \frac{k-6}{3}$
	III is also true.
	D is the answer.
42. B	
43. A	$\frac{{}_{6}C_{3}({}_{8}C_{4})5!3!+{}_{6}C_{4}({}_{8}C_{3})4!4!+{}_{6}C_{5}({}_{8}C_{2})3!5!+{}_{8}C_{1}2!6!}{{}_{14}P_{7}}$
	$=\frac{94}{1001}$
44. B	$\sigma = \frac{66-45}{3} = 7$
	Boy's mark = $45 + 7(-5) = 10$
L	I .

45. C

- $\therefore \text{ Mean of } \{a,b,c,d,e,f\} = c$
- : the mean remains unchanged after removing the datum c.
- $\therefore m_2 = c$
- ∴ I is true.
- : When a datum equal to the mean is removed, neither the meximum value of nor the minimum value changes.
- :. The range remains unchanged.
- $\therefore r_2 = r_1$
- ∴ II is true.
- : When a datum equal to the mean is removed(number of date reduced from 6 to 5), the standard deviation will increase. Variance will increase too.
- ∴ III is not true.