2021-22 Mock MATH CP PAPER 2

CARMEL SECONDARY SCHOOL HONG KONG DIPLOMA OF SECONDARY EDUCATION MOCK EXAMINATION

MATHEMATICS Compulsory Part PAPER 2

11:00 am - 12:15 pm $(1\frac{1}{4})$ hours)

S6 ()

Name: _____ ()

Please circle your Math Group				
C1	C2	C3	C4	
Mr CH Wong	Mr Leung	Mr KK Wong	Mr CH Wong	

Date: 28 Jan 2022

No. of pages: 15

Total marks: 45

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF **PAPER**' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1. $\frac{3^{4n}(27^n)}{9^{3n}} =$ A. 3^{4n} . B. 3^n . C. 3^{-2n} . D. 3^{-3n} .

2. If
$$3p(p-2q) = 2p-q$$
, then $q =$

A.
$$\frac{3p^2 - 2p}{6p - 1}$$
.
B. $\frac{3p^2 - 2p}{6p + 1}$.
C. $\frac{3p^2 + 2p}{6p - 1}$.
D. $\frac{3p^2 + 2p}{6p + 1}$.

3.
$$h^2 - 4hk - 12k^2 - 3h - 6k =$$

A.
$$(h-2k)(h+6k+3)$$
.

- B. (h-2k)(h-6k+3).
- C. (h+2k)(h-6k-3).

D.
$$(h+2k)(h+6k-3)$$
.

$$4. \qquad \frac{\pi^2}{222} =$$

- A. 0.044 (correct to 2 decimal places).
- B. 0.0444 (correct to 3 significant figures).
- C. 0.0445 (correct to 4 decimal places).
- D. 0.04446 (correct to 5 significant figures).

5. Let f(x) = (hx+10)(x-6) + k, where h and k are constants. If f(-2) = f(3) = 5, find k.

- A. –23
- B. -3
- C. 43
- D. 53

6. Let a and b be constants. If $2x^2 + (a-3)x + a + b \equiv (x+4)(2x-5)$, then b = b = b = a + b = b = a + b = a + b = b = a +

A. -26.
B. -6.
C. 6.
D. 26.

7. Let $f(x) = 5x^2 - 1$. If α is a constant, then $f(\alpha) - f(\alpha - 1) = 1$

- A. 5.
- B. $2\alpha 3$.
- C. $3-10\alpha$.
- D. $10\alpha 5$.

- 8. Let $p(x) = 2x^2 x + c$, where c is a constant. If p(x) is divisible by x + 2, find the remainder when p(x) is divided by 2x 1.
 - A. –10
 - В. –5
 - C. 5
 - D. 10
- 9. A sum of \$84000 is deposited at an interest rate of 8% per annum for 5 years, compound monthly. Find the interest correct to the nearest dollar.
 - A. \$2836
 - B. \$33600
 - C. \$40341
 - D. \$41147

10. Let a, b and c be non-zero numbers. If 2a = 3b and a: c = 4:3, then $\frac{a+2b}{5b-c} = \frac{a+2b}{5b-c}$

A. $\frac{16}{27}$. B. $\frac{24}{37}$. C. $\frac{28}{31}$. D. $\frac{7}{6}$.

11. The solution of $7x - 6 \ge 5(x+4)$ and $\frac{8-5x}{3} < -19$ is A. $x \le 13$.

- B. $x \ge 13$. C. x < 13 .
- D. *x* > 13 .

- 12. It is given that w varies directly as the x and inversely as square root of y. If x is decreased by 10% and y is increased by 44%, then w
 - A. is increased by 34%.
 - B. is decreased by 25%.
 - C. is increased by 60%.
 - D. is decreased by 37.5%.
- 13. Let a_n be the *n*th term of a sequence. If $a_1 = 2$, $a_2 = 5$ and $a_{n+2} = a_n + 2a_{n+1}$ for any positive integer *n*, then $a_5 =$
 - A. 19.
 - B. 29.
 - C. 37.
 - D. 70.

- 14. Let *h* and *k* be real constants with h > 0. Which of the following statements about the graph of $y = h(k-x)^2 + h$ must be true?
 - I. The graph opens upwards.
 - II. The vertex of the graph is (h,k).
 - III. The *y*-intercept of the graph is positive.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

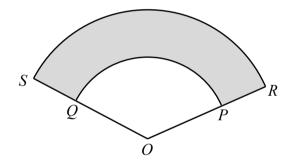
15. The base of a solid right pyramid is a square with length 8 cm. If the total surface area is 144 cm^2 , find the volume of the pyramid.

A. 64 cm^2

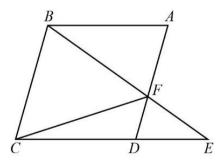
B. 96 cm^2

C.
$$\frac{320}{3}$$
 cm²

- D. 192 cm^2
- 16. In the figure, *OPQ* and *ORS* are sectors with centre *O*, where OP = 10 cm and OR = 18 cm. The area of the shaded region *PQSR* is 84π cm². Which of the following is/are true?
 - I. The angle of the sector OPQ is 135° .
 - II. The area of the sector ORS is 108π cm².
 - III. The perimeter of the shaded region *PQSR* is $(21\pi + 16)$ cm.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only



- 17. In the figure, *ABCD* is a parallelogram. *F* is a point lying on *AD* such that *BF* produced and *CD* produced meet at *E*. It is given that AF:FD=5:3. If the area of ΔDEF is 135 cm², then the area of parallelogram *ABCD* is
 - A. 720 cm^2 .
 - B. 750 cm^2 .
 - C. 1065 cm^2 .
 - D. 1200 cm^2 .



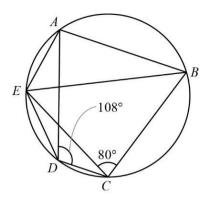
18. In the figure, *ABC* is a straight line. AD //CE and $\angle DAB = 90^{\circ}$. DB = 10 cm, BE = 24 cm, DE = 26 cm and AB = 6 cm. Find the perimeter of the quadrilateral *ACED*.



- 19. The length of a ribbon is measured to be 95 cm, correct to the nearest cm. The length of a rope is measured to be 150 cm with a percentage error of 2%. Find the upper limit of the difference in the length between the rope and the ribbon.
 - A. 52.5 cm
 - B. 57 cm
 - C. 58.5 cm
 - D. 59.5 cm
- 20. *ABCDE* is a regular pentagon. The diagonals AC and BD intersects each other at F. Which of the following are true?
 - I. AF = FC.
 - II. $\triangle ABF \sim \triangle ACD$.
 - III. *AEDF* is a rhombus.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

21. In the figure, *ABCDE* is a circle. It is given that AE:DE=5:4, AB//DC, $\angle ADC=108^{\circ}$ and $\angle BCE=80^{\circ}$. Find $\angle EBC$.

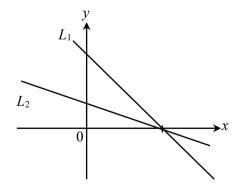
- A. 37°
- B. 39°
- C. 40°
- D. 42°



22.	$\frac{\sin(270^\circ + \theta)\cos\theta}{\cos(360^\circ - \theta)}$	$\frac{\theta}{\theta} - \frac{1}{\cos(180^\circ - \theta)} =$
	A. sin	θ.
	B. –sir	$n\theta an heta$.
	C. sin	heta an heta .
	D. $\frac{1-s}{s}$	$\frac{\sin\theta\cos\theta}{\cos\theta} \ .$

23. The figure shows the straight lines $L_1: ax + y = b$ and $L_2: x + cy = 1$, where *a*, *b* and *c* are constants. Which of the following must be true?

- I. a = bII. c < 0
- II. U · U
- III. *ac* < 1
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only



The polar coordinates of the points A, B and C are $(30,32^\circ)$, $(18,122^\circ)$ and $(24,302^\circ)$ 24. respectively. Find the area of $\triangle ABC$.

is a

A. 216 B. 486 C. 576

630

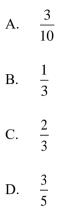
D.

- It is given that A and B are two distinct points on the straight line x 2y + k = 0, where k 25. constant. Let P be a moving point in the rectangular coordinate plane such that $AP^2 + BP^2 = AB^2$. If the equation of the locus of P is $x^2 + y^2 - (44 + k)x + 2y + 17 = 0$, k =
 - A. -20 . B. -16 . C. 16 . D. 20 .
 - Let h and k be constants. The coordinates of the points A and B are (3,k) and (20,8)26. respectively. The straight line hx + 2y - 29 = 0 is an altitude of $\triangle OAB$ that passes through A, where O is the origin. k =
 - A. -5. B. 7. C. 14. D. 22.

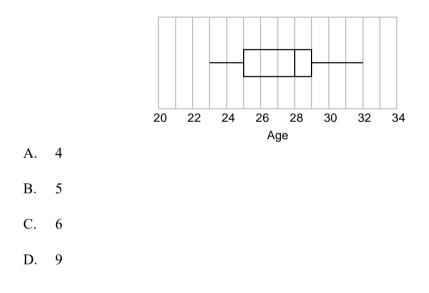
27. The equation of the circle C is $2x^2 + 2y^2 - 12x - 4y + 15 = 0$. Which of the following is/are true?

- I. The coordinates of the centre of C is (6, 2).
- II. The area of the circle is 2.5π .
- III. C cuts the y-axis at two distinct points.
 - I only A.
 - II only В.
 - C. I and III only
 - II and III only D.

28. Two numbers are randomly drawn at the same time from six cards numbered 1, 2, 4, 5, 7, 8 respectively. Find the probability that the sum of the two numbers drawn is less than 10.



29. The box-and-whisker diagram below shows the distribution of the ages of students in a baking class. Find the inter-quartile range of the distribution.



30. The stem-and-leaf diagram below shows the distribution of the ages of the workers in a company, where x and y are integers with $0 \le x, y \le 9$.

 $\begin{array}{c|c} \underline{\text{Stem (tens)}} \\ \hline 2 \\ 3 \\ 4 \\ 2 \\ y \end{array} \qquad \begin{array}{c} \underline{\text{Leaf (units)}} \\ 2 \\ 5 \\ 7 \\ 7 \\ x \\ 4 \\ 2 \\ y \end{array}$

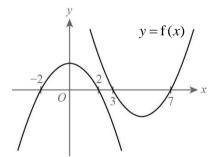
If the range and the mode of the above distribution are 22 kg and 37 kg respectively, find the standard deviation of the distribution correct to 3 significant figures.

- A. 7.24 kg.
- B. 7.76 kg.
- C. 8.13 kg.
- D. 8.23 kg.

Section B

- 31. The H.C.F. and the L.C.M. of three expressions are $2a^2b^2$ and $20a^4b^5$ respectively. If the first expression and the second expression are $4a^4b^2$ and $20a^3b^3$ respectively, then the third expression is
 - A. $2a^2b^5$
 - B. $2a^4b^2$
 - C. a^2b^5
 - D. a^4b^2
- 32. $7 \times 16^2 + 5 \times 4^2 + 3 =$
 - A. 1110101011₂
 - B. 11101010110₂
 - C. 11101010011₂
 - D. 111001010011₂

33. Let f(x) be a quadratic function. The figure below represents the graph of y = f(x) and the graph of



- A. y = -f(x+5).
- B. y = f(-x+5).
- C. y = -5f(x).
- D. y=f(-5x).

34. It is given that $\log_4 y$ is a linear function of $\log_2 x$. The intercepts on the vertical axis and on the horizontal axis of the graph of the linear function are 5 and 3 respectively. Which of the following must be true?

A. $x^5 y^3 = 2^{30}$ B. $x^3 y^5 = 2^{30}$ C. $x^{10} y^3 = 2^{30}$

D. $x^3 y^{10} = 2^{30}$

35. For $0^{\circ} < x \le 360^{\circ}$, how many roots does the equation $7\cos x + 4\sin^2 x = 7$ have?

A. 1B. 2C. 3

D. 4

36. Let a_n be the *n*th term of a geometric sequence. Given that $a_1 + a_2 + a_3 + ... + a_8 = \sqrt{2} + 1$ and $\frac{a_5}{a_4} = \sqrt{2}$, which of the following must be true?

- I. a_1 is rational.
- II. $a_{20} < 50$
- III. $a_1 + a_2 + a_3 + \dots + a_{20} < 150$

A. I only

B. III only

- C. I and II only
- D. II and III only

37. Consider the following system of inequalities:

 $\begin{cases} 3x + 4y - 32 \le 0\\ 2x + 5y - 26 \le 0\\ x \ge 0\\ y \ge 0 \end{cases}$

Let R be the region which represents the solution of the above system of inequalities. Find the constant k such that the greatest value of 9x+10y-k is 55, where (x, y) is a point lying in R.

- A. -3 B. 37
- C. 41
- D. 43

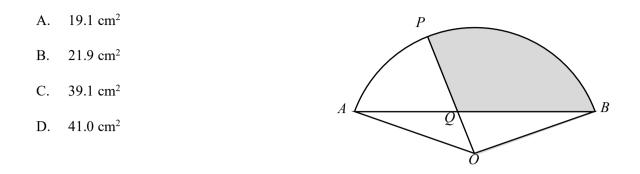
38. Let $u = \frac{1}{\cos \theta - i \sin \theta}$ and $v = \sin \theta + i$ where $0^\circ \le \theta \le 360^\circ$. Define $z = u^2 + v^2$. Which of the following must be true?

- I. The imaginary part of u is equal to the real part of v.
- II. The imaginary part of z is equal to $2\sin\theta\cos\theta$.
- III. The real part of z is equal to $-\sin^2 \theta$.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

39. Let k be a constant. If the straight line x + 2y - k = 0 and the circle $x^2 + y^2 - 8x + 12y - 48 = 0$ intersect at two distinct points A and B, then the y-coordinate of the mid-point of AB is

A.	$\frac{28-4k}{5}$	
B.	$\frac{4k-28}{5}$	
C.	$\frac{14-2k}{5} .$	
D.	$\frac{2k-14}{5}$	

40. The figure shows a sector *AOB* with centre *O*. *P* is a point on *AB* with AP:PB=3:4. *AB* and *OP* intersect at *Q*. *OA* = 10 cm and $\angle OAB = 27^{\circ}$. Find the shaded area correct to the nearest 0.1 cm^2 .



41. Let k be a positive constant. The straight line 5x-12y-60k = 0 cuts the x-axis and y-axis at A and B respectively. Denote O the origin and C the inscribed circle of $\triangle OAB$. If the length of the radius of C is 52 units, find the coordinates of the intersection of C and AB.

- A. (72,100)
- B. (72,-100)
- C. (78,-108)
- D. (100,-72)

- 42. A queue is formed by 6 adults and 3 children. If no children stand next to each other and no children are at any of the two ends, how many different queues can be formed?
 - A. 43 200
 - B. 86 400
 - C. 151 200
 - D. 332 640

43. Peter takes part in three different mathematics competitions. The probabilities for him to get a distinction in the three competitions are 0.2, 0.3 and 0.15 respectively. Find the probability that he gets a distinction in at least 1 competition.

A. 0.407B. 0.524

- C. 0.65
- D. 0.991

- 44. In a test, the scores of Carol and David are 72 marks and 56 marks respectively. If the standard deviation of the test scores is 8 marks, then the difference of the standard scores of Carol and David is
 - A. 2.
 B. 8.
 C. 16.
 D. 128.

- 45. The mean and variance of a group of numbers $\{x_1, x_2, x_3, \dots, x_{20}\}$ are 14 and *a* respectively. Let *k* be a constant. If the mean and variance of another group of numbers $\{kx_1 3, kx_2 3, kx_3 3, \dots, kx_{20} 3\}$ are 25 and *a*+9 respectively, *a* =
 - A. 2.
 - B. 3.
 - C. 9.
 - D. 12.

END OF PAPER