PO LEUNG KUK CELINE HO YAM TONG COLLEGE

First Term Examination

2019-2020

FORM SIX MATHEMATICS

COMPULSORY PART

PAPER 1

Question-Answer Book

INSTRUCTIONS

- 1. Write your name, class, class no., date and time in the space provided on this cover.
- 2. This paper consists of THREE sections, A(1), A(2) and B.
- 3. Answer **ALL** questions in Section A(1), A(2) and B. Write your answer in the space provided. Supplementary answer sheets will be supplied on request.
- 4. Unless otherwise specified, all working must be shown clearly.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in the paper are not necessarily drawn to scale.

Name:	
Class:	
Class Number:	
Date:	
Time:	

Mark:

Time allowed: 2 hours 15 minutes

SECTION A(1) (35 marks)

A A T T	stions in this section	1		• • • • • • • • • • • • • • • • • • • •
Answer All. alles	ctione in thic cection	i and write voiir ans	swers in the snace	nrovided
miswei mil que		i and write your and	owers in the space	provideu.

1.	Simplify	$\frac{(2a^{-3})^2}{4a^{-2}}$	and express your answer with positive indices.	(3 marks)

2. Factorize

- (a) $4x^2 12xy + 9y^2$,
- (b) $25 4x^2 + 12xy 9y^2$.

(3 marks)

	Make b the subject of the formula $\frac{3a+7b}{2} = 2b+1$.	(3 marks)
	(a) Solve the inequality $\frac{x}{3} - \frac{2x-1}{4} < -1$.	
	(b) Write down the least integral value of x that satisfies the inequality in (a).	
		(4 marks
		(4 marks
		(4 marks
_		(4 marks
		(4 marks

Э.	Four boys, 10m, Patrick, Scott and William have \$25.7, \$28.2, \$36.5 and \$42.6 respectively.
	(a) Estimate the total amount that they have by
	(i) rounding down each datum to the nearest dollar,
	(ii) rounding up each datum to the nearest dollar.
	(b) If the four boys want to buy a box of board game of price \$130, will they have enough
	money? Explain your answer.
	(4 marks)
6.	The weight of an orange and an apple are 400 g and 550 g respectively. The total number of
0.	oranges and apples sold was 350 and the total weight of the oranges and apples sold was
	158 kg. Find the number of apples sold. (4 marks)
	156 kg. This the number of apples sois. (4 marks)

7.	The cost of a bag is \$500. The bag is now sold and the percentage profit is 30%.				
	(a)	Find the selling price of the bag.			
	(b)	If the bag is sold at a discount of 25% on its marked price, find the marked price of the			
		bag.			
		(4 marks)			

8.	The following table shows the distribution of the numbers of revision time (in hour) spent by a
	group of students on a certain day.

Number of revision time (in hour)	1	2	3	4
Number of students	8	4	3	k

It is given that k is a positive number.

- (a) Write down the least possible value and the greatest possible value of the median of the distribution.
- (b) If the mean of the distribution is at most 2.5, how many possible values of k are there? Explain your answer.

(5 marks)

9.

In Figure 1, ABCD is a rhombus, CDEF is a parallelogram and ABE is an equilateral triangle. If $\Theta BCD = 20^{\circ}$, find

- (a) ΘDEB , and
- (b) ΘDCF .

ram c)	KS)

SECTION A(2) (35 marks)

Answer ALL questions in this section and write your answers in the space provided.

10.	In a polar coordinate system, O is the pole. The polar coordinates of the points P	and Q are
	$(4, 28^{\circ})$ and $(4, 268^{\circ})$ respectively. <i>M</i> is the mid-point of <i>PQ</i> .	
	(a) Find the polar coordinates of M .	(3 marks)
	(b) $DOPQ$ is enlarged to form $DOP'Q'$. The polar coordinates of the mid-point	of $P'Q'$
	are $(3, 328^{\circ})$. Find the area DOP'Q'.	(3 marks)

11.	Let	f(x)	$=2x^3$	$-7x^2$	+6x	-5.
-----	-----	------	---------	---------	-----	-----

- (a) Find the quotient and the remainder when f(x) is divided by $x^2 4x + 3$. (2 marks)
- (b) Let g(x) = f(x) (rx + s), where r and s are constants. It is given that g(x) is divisible by $x^2 4x + 3$.
 - (i) Write down the values of r and s.
 - (ii) Hence, factorize g(x) completely.

(4 marks)

workers in a group.													
Stem (tens)	Leaf	f (unit	<u>ts)</u>										
4	1	1	2	3	4	5	5	8	9				
5	a	5	6	6									
6	2	b											
It is given that the I	mean a	and th	ne ran	ige of	f the a	bove	distri	butio	n are	\$50 a	nd \$2	8 resp	ectively.
(a) Find the media	ın and	the s	tanda	rd de	viatio	n of t	the ab	ove d	istrib	ution.			(5 marks)
(b) If a worker is	rando	mly s	electe	ed fro	om the	grou	ıp, fir	nd the	prob	abilit	y that	the h	ourly wage
of the selected	work	er exc	ceeds	\$50.									(2 marks)

12. The stem-and-leaf diagram below shows the distribution of the hourly wages (in dollars) of the

13. A wooden model is made from a right cylinder by drilling a hole in the middle. The hole is in the shape consisting of a right circular frustum and a hemisphere with the common base. The radii of the upper base and the lower base of the frustum are 2 cm and 4 cm respectively. The depth of the hole is h cm. The width of the ring of the top base of the model is 3 cm and the height of the model is 12 cm (See Figure 2). It is known that the volume of the model is 192p cm³.

Figure 2

- (a) Find the value of h. (5 marks)
- (b) If the model is cut into two identical parts, is the increase in the total surface area greater than 100 cm²? Explain your answer. (3 marks)

14.	The profit P of product T is the sum of two parts, one part varies directly as X and the
	other part varies directly as x^3 . It is known that when $x = 2$, $P = 28$ and when $x = 1$
	P = -10.
	(a) Express P in terms of x . (3 marks)
	(b) If $P = Ax(Ax - 1)^2 + 2Ax(Ax - B)$ for all values of x, where A and B are constants
	find the values of A and B . (2 marks)
	(c) Meanwhile, another product Q suffers a loss of $(4x - 10)$. If the profit of product T is
	equal to the loss of product Q , using the result of (a) and (b), or otherwise, find the value
	of x .
	(3 marks)

SECTION B (35 marks)

Answer ALL questions in this section and write your answers in the space provided.

15.

Figure 3

The graph in Figure 3 shows the linear relation between $\log_2 x$ and $\log_8 y$. The intercepts on the horizontal axis and the vertical axis of the graph are -4 and 2 respectively. It is given that $y = ax^b$, where a and b are constants. Find the values of a and b. (4 marks)

committee. Find the probabilities that	(21
(a) at least 2 parents are selected,	(2 marks
(b) different number of teachers and parents are selected.	(2 marks

1/. Let	be the n^{-1} term of a geometric sequence. It is given that the sum of the sequence	first 2 terms
of t	the sequence is 8 and $T_3 + T_4 = 72$.	
(a)	Find T_7 .	(4 marks)
(b)	Determine whether the sum of the 3^{rd} term to the k^{th} term of the sequence can 59 040, where k is a positive integer greater than 3. Explain your answer.	be equal to (3 marks)

18. (a)

Figure 4 (a)

Figure 4 (a) shows a piece of triangular paper card ABC with AB = AC = 21 cm and BC = 16 cm. Let P and Q be the points lying on AB and AC respectively such that $\Box BCP = \Box CBQ = 60^{\circ}$.

- (i) Find ΘBPC .
- (ii) Find BP.

(4 marks)

(b) The paper card described in (a) is fold along *PQ* and the plane *BCQP* lies on the horizontal ground as shown in Figure 4 (b).

Figure 4 (b)

It is given that the shortest distance from A to BC is 14 cm. Find the shortest distance from A to the plane BCQP. (4 marks)

- 19. (a) Prove that $\tan^2 q = \frac{1}{\cos^2 q} 1$. (2 marks)
 - (b) In Figure 5, the equation of the circle is $\left(x \frac{125}{8}\right)^2 + \left(y \frac{51}{2}\right)^2 = \left(\frac{325}{8}\right)^2$. The circle cuts the y-axis at the points A and C, and cuts the x-axis at the points B and D. L is the tangent to the circle at A.

Figure 5

(i) Find the coordinates of A, B, C and D.

(4 marks)

- (ii) By considering DABC, using the result of (a), or otherwise, prove that $\tan \Theta ABC = \frac{12}{5}$. (3 marks)
- (iii) Using the result of (b)(ii), or otherwise, find the equation of L. (3 marks)

