PO LEUNG KUK CELINE HO YAM TONG COLLEGE

First Term Examination 2019-2020 FORM SIX MATHEMATICS COMPULSORY PART Marking Scheme

1.
$$\frac{(2a^{-3})^2}{4a^{-2}} = \frac{4a^{-6}}{4a^{-2}} = \frac{1}{a^4}$$
 [1M]

2. (a)
$$4x^2 - 12xy + 9y^2$$

= $(2x - 3y)^2$ [1A]
(b) $25 - 4x^2 + 12xy - 9y^2$

(b)
$$25-4x^2+12xy-9y^2$$

= $5^2-(2x-3y)^2$ [1M]
= $(5-2x+3y)(5+2x-3y)$ [1A]

3.
$$\frac{3a+7b}{2} = 2b+1$$

$$3a+7b = 4b+2$$

$$3b = 2-3a$$

$$b = \frac{2-3a}{3}$$
[1M]
[1A]

4. (a)
$$\frac{x}{3} - \frac{2x-1}{4} < -1$$

 $4x - 3(2x-1) < -12$ [1M]
 $4x - 6x + 3 < -12$
 $-2x < -15$
 $x > \frac{15}{2}$ [1M + 1A]

[1A]

5. (a) (i)
$$25.7 + 28.2 + 36.5 + 42.6$$

 $\approx 25 + 28 + 36 + 42$
 $= 131 [1A]
(ii) $25.7 + 28.2 + 36.5 + 42.6$
 $\approx 26 + 29 + 37 + 43$
 $= 135 [1A]

	(b)	: 25.7 + 28.2 + 36.5 + 42.6	
		>131	[1M]
		>130	
		They will have enough money.	[1f.t.]
6.	Let the number of orange and apple be <i>x</i> and <i>y</i> respectively.		
	$\begin{cases} x + y = 350\\ 400x + 550 y = 158 \ 000 \end{cases}$		[1M + 1A]
	<i>y</i> =		[1M + 1A]
	The number of apple is 120.		
7.	(a)	The selling price	
		$= 500 \times (1 + 30\%)$	[1M]
		= \$650	[1A]
	(b)	The marked price	
		$=\frac{650}{1-25\%}$	[1M]
		$=\$\frac{2600}{3}$	[1A]
		$-\phi \overline{3}$	
8.	(a)	Least possible value of the median: 1.5	[1A]
0.	(u)	Greatest possible value of the median: 4	[1A]
	(b)	$\frac{1 \times 8 + 2 \times 4 + 3 \times 3 + 4k}{8 + 4 + 3 + k} \le 2.5$	[1M]
	(0)		
		$\frac{25+4k}{15+k} \le \frac{5}{2}$	
		$50+8k \le 75+5k$	
		$3k \leq 25$	
		$k \le \frac{25}{3}$	[1A]
		\therefore There are 8 possible value of <i>k</i> .	[1A]
9.	(a)	$\angle BAD = 20^{\circ}$	
		$\angle DAE = 40^{\circ}$	[1A]
		AD = AB	
		AB = AE	
		$\therefore AD = AE$	
		$\angle AED = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}$	[1M]
		$\angle DEB = 70^{\circ} - 60^{\circ} = 10^{\circ}$	[1A]

(1	5)	$AB \parallel EF$,	
		$\angle DEF + 60^\circ + 70^\circ = 180^\circ$	[1M]
		$\angle DEF = 50^{\circ}$	
		$\angle DCF = 50^{\circ}$	[1A]

10. (a)
$$\angle POQ = 360^{\circ} - 268^{\circ} + 28^{\circ} = 120^{\circ}$$

Let the coordinates of *M* be (r, θ)
 $\cos \frac{120^{\circ}}{r} = \frac{r}{r}$

$$\cos\frac{120^{\circ}}{2} = \frac{r}{4}$$
[1M]
 $r = 2$
 $\theta = 268^{\circ} + 60^{\circ} = 328^{\circ}$
[1M]

$$\theta = 208 + 60 = 328$$

$$\therefore \text{ The polar coordinates of } M \text{ are } (2, 328^\circ).$$
[1A]
$$BM = \sqrt{4^2 - 2^2} = \sqrt{12}$$

(b)
$$PM = \sqrt{4^2 - 2^2} = \sqrt{12}$$

Area of ΔOPQ
 $\frac{1}{2} = \sqrt{12} = 2 = 4\sqrt{2}/(2)\sqrt{12}$

$$\frac{1}{2} \times 2 \times \sqrt{12} \times 2 = 4\sqrt{3}/2\sqrt{12}$$
[1M]

Area of A *QPQ* (2)²

$$\frac{\text{Area of }\Delta OPQ}{\text{Area of }\Delta OP'Q'} = \left(\frac{2}{3}\right)$$
[1M]

Area of
$$\Delta OP'Q' = 9\sqrt{3}$$
 [1A]

11. (a) The quotient:
$$2x + 1$$
[1A]The remainder: $4x - 8$ [1A]

(b) (i)
$$r = 4$$

$$s = -8$$
(ii) $g(x) = f(x) - (4x - 8)$

$$= (2x + 1)(x^{2} - 4x + 3)$$

$$= (2x + 1)(x - 3)(x - 1)$$
[1M]
[1A]

12. (a)
$$60 + b - 41 = 28$$

 $b = 9$
 $41 \times 2 + 42 + 43 + 44 + 45 \times 2 + 48 + 49$
 $\frac{+50 + a + 55 + 56 \times 2 + 62 + 69}{15} = 50$
 $a = 4$ [1M + 1A]
[Remarks: 1M for either finding range or mean + 1A for both *a* and *b* correct]
Median = \$48 [1A]
s.d. = \$8.10 [1M + 1A]
(b) The probability = $\frac{6}{2} = \frac{2}{3}$

(b) The probability
$$=\frac{6}{15} = \frac{2}{5}$$
 [1M + 1A]

13. (a) Height of the frustum = (h-4) cm

Volume of the frustum

$$=\frac{1}{3} \times \pi \times 4^2 \times 2(h-4) - \frac{1}{3} \times \pi \times 2^2 \times (h-4)$$
[1M+1A]

$$=\frac{28}{3}(h-4)\pi \text{ cm}^3$$
 [1A]

$$\pi \times 5^2 \times 12 - \frac{28}{3} \left(h - 4 \right) \pi - \frac{4}{3} \pi \times 4^3 \times \frac{1}{2} = 192\pi$$
 [1M]

$$h = 11$$
 [1A]

(b) The increase in total surface area (4+8) = 7

$$= \left(12 \times 10 - \frac{(4+8) \times 7}{2} - \frac{1}{2}\pi \times (4)^2\right) \times 2$$
[1M+1A]
= 106 cm²

$$= 106 \text{ cm}^2$$

>100 cm²

$$\therefore$$
 It is greater than 100 cm² [1f.t.]

14. (a) Let
$$P = k_1 x + k_2 x^3$$
, where k_1, k_2 are constants [1A]

$$\begin{cases}
28 = 2k_1 + 8k_2 \\
-10 = k_1 + k_2
\end{cases}$$
[1M]

$$l^{-10} = k_1 + k_2$$

 $k_1 = -18, k_2 = 8$

$$P = 8x^3 - 18x$$
[1A]

(b) By compare coefficients
$$(3 - 9)$$

$$A^{\circ} = 8$$

$$A = 2$$

$$A - 2AB = -18$$

[1M + 1A]

$$B = 5$$

(c)

$$8x^{3} - 18x = 4x - 10$$

$$2x(2x - 1)^{2} + 4x(2x - 5) = 4x - 10$$
[1M]

$$2x(2x-1)^{2} + 4x(2x-5) - 2(2x-5) = 0$$

$$2x(2x-1)^{2} + 2(2x-1)(2x-5) = 0$$

$$2(2x-1)(2x^{2} + x - 5) = 0$$

[1M]

$$x = \frac{1}{2}$$
 or $x = \frac{-1 \pm \sqrt{41}}{4}$ [1A]

15.
$$y = ax^{b}$$

 $\log_{8} y = \log_{8} a + b \log_{8} x$ [1A]
 $\log_{8} y = \log_{8} a + b \frac{\log_{2} x}{\log_{2} 8}$ [1M]
 $\log_{8} y = \log_{8} a + \frac{b}{3} \log_{2} x$
 $\log_{8} a = 2$
 $a = 64$ [1A]
 $\frac{b}{3} = \frac{1}{2}$
 $b = \frac{3}{2}$ [1A]

16. (a)
$$\frac{C_2^6 C_2^4 + C_3^6 C_1^4 + C_4^6}{C_4^{10}}$$
 [1M]

$$=\frac{37}{42}$$
 [1A]

(b)
$$1 - \frac{C_2^6 C_2^4}{C_4^{10}}$$
 [1M]
= $\frac{4}{7}$ [1A]

17. (a) Let
$$T_n = aR^{n-1}$$
 [1M]

$$\begin{cases} T_1 + T_2 = 8\\ T_3 + T_4 = 72 \end{cases}$$

$$\begin{cases} a + aR = 8 \end{cases}$$

$$\begin{cases} a + aR = 0 \\ aR^2 + aR^3 = 72 \end{cases}$$
[1M]
$$R^2 = 9$$

$$R = \pm 3$$

$$[1A]$$
When $R = 3$

$$a = 2$$

$$T_{7} = 2 \times 3^{6} = 1458$$

When $R = -3$
 $a = -4$

$$T_{7} = -4 \times (-3)^{6} = -2916$$
[1A]

	(b)	Let $S_{k} - S_{2} = 59\ 040$	[1M]
		When $R = 3$	
		$\frac{2(3^{k}-1)}{3-1} - 8 = 59\ 040$	[1M]
		k = 10	
		\therefore It can be equal to 59040.	[1f.t.]
18.	(a)	(i) In $\triangle ABC$ $\cos \angle ABC = \frac{21^2 + 16^2 - 21^2}{2 \times 21 \times 16}$	[1M]
		$\angle ABC \approx 67.60731219^{\circ}$	
		In ΔBCP	
		$\angle BPC = 180^\circ - \angle ABC - 60^\circ \approx 52.4^\circ$	[1A]
		(ii) In $\triangle BCP$	[]
		$\frac{BP}{\sin 60^{\circ}} = \frac{16}{\sin \angle BPC}$	[1M]
		$\frac{1}{\sin 60^{\circ}} = \frac{1}{\sin \angle BPC}$	
		$BP \approx 17.5 \text{ cm}$	[1A]
	(b)	Let the mid-points of PQ and BC be X and Y respectively.	
		In $\triangle ABC$ in Figure 4(a)	
		$\angle BAC \approx 180^{\circ} - 67.60731219^{\circ} \times 2 = 44.78537561^{\circ}$	
		$AP = 21 - BP \approx 3.509214074 \text{ cm}$	
		$\cos\frac{\angle BAC}{2} = \frac{AX}{AP}$	
		$AX \approx 3.24460059 \text{ cm}$	[1M]
		$\cos\frac{\angle BAC}{2} = \frac{AY}{21}$	
		<i>AY</i> ≈ 19.41648784 cm	
		In $\triangle AXY$ in Figure 4(b)	
		$XY \approx 19.41648784 - 3.24460059 = 16.17188725$ cm	[1M]
		By Heron's formula,	
		Area of $\Delta AXY = 18.07661854 \text{ cm}^2$	[1A]
		The required distance	
		$=\frac{18.07661854 \times 2}{16.17188725} = 2.24 \text{ cm}$	[1A]

19. (a) R.H.S.

$$= \frac{1}{\cos^{2} \theta} - 1$$

$$= \frac{1 - \cos^{2} \theta}{\cos^{2} \theta}$$

$$= \frac{\sin^{2} \theta}{\cos^{2} \theta}$$
[1M]

$$= \tan^{2} \theta$$
[1A]

$$= \tan^{2} \theta = \frac{1}{\cos^{2} \theta} - 1$$
(b) (i) When $y = 0$,
 $x = \frac{189}{4}$ or $x = -16$
[1M]
 \therefore The coordinates of *B* and *D* are $\left(\frac{189}{4}, 0\right)$ and $\left(-16, 0\right)$ respectively. [1A]
When $x = 0$,
 $y = 63$ or $y = -12$
[1M]
 \therefore The coordinates of *B* and *D* are $\left(0, 63\right)$ and $\left(0, -12\right)$ respectively. [1A]
(ii) $\mathcal{A}C = 63 + 12 = 75$
 $\mathcal{A}B = \sqrt{\left(\frac{189}{4}\right)^{2} + \left(12\right)^{2}} = \frac{195}{4}$
 $\mathcal{B}C = \sqrt{\left(\frac{189}{4}\right)^{2} + \left(63\right)^{2}} = \frac{315}{4}$
[1M]
 $\cos \angle \mathcal{ABC} = \frac{\left(\frac{195}{4}\right)^{2} + \left(\frac{315}{4}\right)^{2} - 75^{2}}{2\left(\frac{195}{4}\right)\left(\frac{315}{4}\right)} = \frac{5}{13}$
By (a)
 $\tan^{2} \angle \mathcal{ABC} = \frac{1}{\left(\frac{5}{13}\right)^{2}} - 1$
[1M]
 $\tan \angle \mathcal{ABC} = \frac{1}{5}$
[1A]

(iii) Let α be the inclination of L

The angle between AC and
$$L = \angle ABC$$

 $\therefore \alpha = 90^{\circ} + \angle ABC$
 $\tan \alpha = \tan \left(90^{\circ} + \angle ABC\right)$
 $= -\frac{1}{\tan \angle ABC}$
 $= -\frac{5}{12}$
 \therefore The equation of L is
 $y = -\frac{5}{12}x - 12$
[1M]

The End