PLKTYTC 2019 – 2020 Physics Mock Examination Papers 1B Suggested Solutions

1.

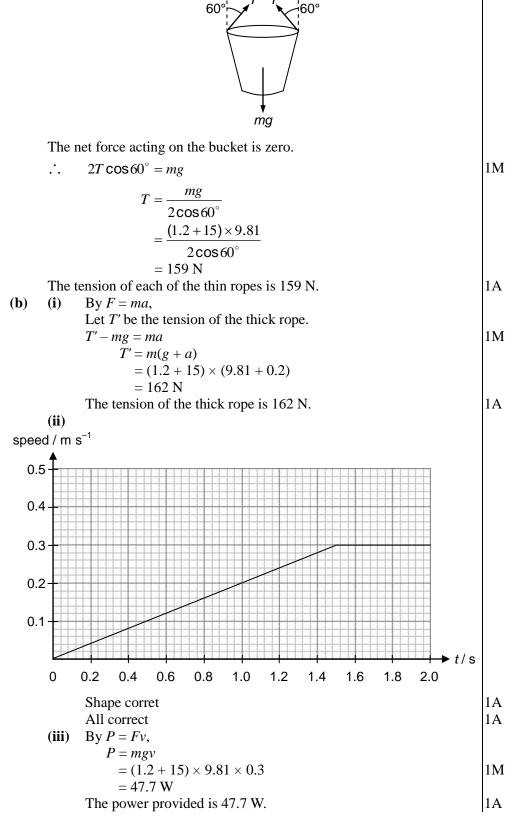
(a)	The vacuum reduces the energy loss from the liquid to the surroundings by conduction.	1A
(b)	Energy supplied $E = VIt$	111
(-)	$= 50 \times 2.0 \times 1$	1M
	= 100 J	1A
(c)	Energy absorbed by the liquid in one second = $mc(T_2 - T_1)$	1 M
	$\therefore mc(T_2 - T_1) = E$	
	E	
	$c = \frac{E}{m(T_2 - T_1)}$	
	$= \frac{100}{0.01(30-25)}$	1M
	= 0.01(30 - 25) = 2000 J kg ⁻¹ °C ⁻¹ The specific heat capacity of the liquid is	1A
(1)	$2000 \text{ J kg}^{-1} \circ \text{C}^{-1}.$	1.4
(d)	By radiation	1A
(e)	R should be adjusted to a larger value.	1A

2.

(a) As the balloon moves up, its volume increases.		
(b)	By the general gas law,	
	$\frac{P_1V_1}{P_1} = \frac{P_2V_2}{P_2}$	
	T_1 T_2	
	$\frac{P_2}{P_2} = \frac{P_1 V_1}{P_1}$	
	$T_2 = T_1 V_2$	
	$= 350 \times \frac{4}{35}$	1M
	$= 40 \text{ Pa } \text{K}^{-1}$	1A
	From the graph, the maximum height is 18 000 m.	1A

(c) By $PV = \frac{1}{3} Nmc^2$, $\overline{c^2} = \sqrt{\frac{3PV}{Nm}}$ $= \sqrt{\frac{3V}{Nm} \times \frac{P}{T} \times T}$ $= \sqrt{\frac{3 \times 35}{0.656} \times 40 \times (273 - 56)}$ $= 1180 \text{ m s}^{-1}$

The root-mean-square speed of helium molecules is 1180 m s^{-1} .


3.
(a) (i) Consider the stopping of the recoiling cannon by friction.
By
$$s = \frac{1}{2}(u+v)t$$
,
 $u = \frac{2s}{t} - v$
 $= \frac{2 \times 0.3}{0.4} - 0$
 $= 1.5 \text{ m s}^{-1}$
The initial recoil speed of the cannon is 1.5 m s^{-1} .
(ii) Take the direction towards the right as positive.
By conservation of momentum,
 $0 + 0 = m_c v_c + m_b v_b$
 $0 = 500 \times (-1.5) + 5.5 v_b$
 $v_b = 136 \text{ m s}^{-1}$
The horizontal speed of the cannonball is 136 m s^{-1} .
(b) (i) Take the upward direction as positive.
Vertical speed of the cannonball = $136 \tan 30^\circ$
 $= 78.7 \text{ m s}^{-1}$
(ii) (Correct force)
 $y = ut + \frac{1}{2}at^2$,
 $-1.2 = 78.7t + \frac{1}{2} \times (-9.81)t^2$

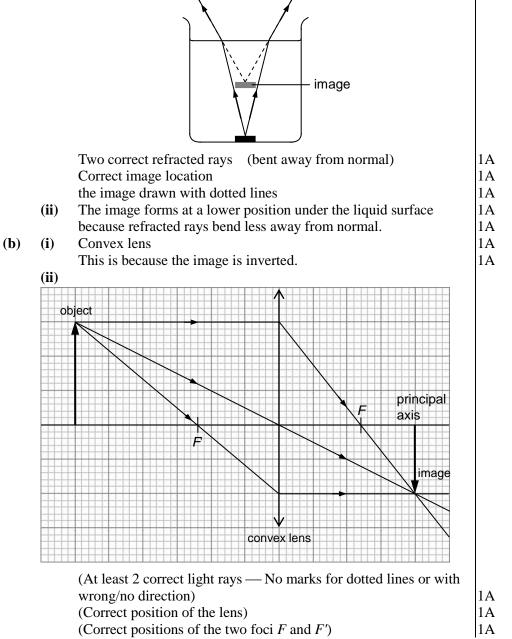
$$-1.2 = 78.7t + \frac{1}{2} \times (-9.81)t^{2}$$

$$4.905t^{2} - 78.7t - 1.2 = 0$$

$$t = 16.1 \text{ s}$$
Range = horizontal distance travelled by the cannonball
$$= 136 \times 16.1$$
IM

$$= 136 \times 16.1$$

= 2.19 × 10³ m [1A]


4.

5.

Stick the paper strip onto the horizontal part BC of the track. Release the toy from a certain height h from the bench surface and measure the corresponding stopping distance d .	✓1A
Stopping distance should be <u>measured from the beginning of the</u> horizontal part <i>BC</i> or on the paper strip.	✓1A
<u>Release</u> the toy from <u>different heights</u> and <u>measure the corresponding</u> <u>stopping distances</u> .	✓1A
Plot a graph of <u><i>d</i> against <i>h</i>,</u> <u>a straight line passing through origin</u> should be obtained	✓1A ✓1A <u>5</u>

6.

(a) (i)

(a) (i) Constructive interferences occur at the centre of fringe P
and at the centre of fringe Q.1A
1A(ii) Path difference at the centre of fringe
$$P = 0\lambda$$
 (or 0)
Path difference at the centre of fringe $Q = \lambda$ 1A
1A(b) Wavelength $\lambda = \frac{v}{f} = \frac{3 \times 10^8}{4 \times 10^{14}}$
 $= 7.5 \times 10^{-7}$ m1A
1A(c) The fringe separation will decrease.1A

(d) The light source should be strong (or the laboratory should be dark).1AAll slits should be narrow.1A

8.

(a)
$$P = \frac{V^2}{R}$$

1000 = $\frac{220^2}{R}$ 1M

$$R = 48.4 \Omega$$
 1A

The resistance of a lamp is 48.4 Ω .

As the lamps on a light post are connected in parallel,

$$\frac{1}{R_{\rm eq}} = 9 \times \frac{1}{R}$$

$$\frac{1}{R_{\rm eq}} = \frac{9}{48.4}$$
 1M

$$R_{\rm eq} = 5.38 \,\Omega$$
 1A

The resistance of the light post is 5.38 Ω .

(b) Resistance of cable
$$= \frac{\rho l}{A}$$

 $= \frac{(1.7 \times 10^{-8}) \times 240}{2.5 \times 10^{-6}}$
 $= 1.63 \Omega$
(c) Let *n* be the number of light post that can be connected in a lighting

(c) Let *n* be the number of right post that can be connected in a righting circuit. By V = IR, $220 = 70 \times (\frac{5.38}{200} + 1.63)$ 1M

$$n = 3.56$$

 \therefore At most 3 light posts can be connected in a lighting circuit. 1A

(d) The lamps are not working at their rated voltage as there is voltage drop through the long cable.

7.

(a)		In the magnet approaches the solenoid, the induced current flows P to Q through the solenoid.	1A
		n the magnet moves inside the solenoid, no current is induced in	171
		olenoid.	1A
			IA
		n the magnet leaves the solenoid, the induced current flows from	1 A
		<i>P</i> through the solenoid.	1A
(b)		$P \to A \to B \to R \to S \to D \to C \to Q$	1A
		$Q \to C \to B \to R \to S \to D \to A \to P$	1A
(c)	(i)	Apply $E = Pt$.	
		Energy generated by shaking the flashlight for 30 s	
		= energy dissipated by lamp in 5 min	
		$P \times 30 = 100 \times 10^{-3} \times 5 \times 60$	1M
		P = 1 W	1A
		The average power of the generator is 1 W.	
	(ii)	No. The lamp is powered by the battery and has constant	
		brightness.	1A
		Shaking the flashlight more vigorously will only charge the	
		battery more quickly.	1A
	(iii)	Peak value of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$	
			13.4
		$= 330 \times 0.0133$	1M
		= 4.39 V	1A
		r.m.s. value of the induced e.m.f. $=\frac{4.39}{\sqrt{2}}=3.10$ V	1A
		$\sqrt{2}$	

10. (a)

(a)	conducting plates	1A
(b)	$^{241}_{95} \text{Am} \rightarrow ^{237}_{93} \text{Np} + ^{4}_{2} \alpha$	2A
<u>Or</u> (c)	$^{241}_{95} \text{Am} \rightarrow ^{237}_{93} \text{Np} + ^{4}_{2} \text{He}$	2A
(c)	The negative electrons are attached to the smoke particles instead of the positive conducting plate. This causes the current between the plates to drop and triggers the	1A
	smoke alarm.	1A
(d)	Activity $=A_0 e^{-kt}$	1 M
	$= (3.33 \times 10^4) \times e^{-\frac{\ln 2}{432} \times 10}$	1 M
	= 3.28 × 10 ⁴ Bq	1A

9.