Sacred Heart Canossian College S6 Mock Examination 2019–2020 Mathematics Paper 1 Solutions

SECTION A(1): (35 marks)

1.
$$\frac{b^{8}}{a^{-5}b^{10}} = \frac{a^{5}b^{8-10}}{b^{2}} = \frac{a^{5}}{b^{2}}$$
(3 marks)
2.
$$mn - 2m = kn + m$$

$$mn - kn = 3m$$

$$n(m - k) = 3m$$

$$n = \frac{3m}{m - k}$$
(3 marks)
3. (a) (11a + 9)(11a - 9) (11a + 9) = (11a + 9)(11a - 9 - 3b)(11a + 9) = (11a + 9)(11a - 9 - 3b)
(4 marks)
4. (a) $\cot t = \frac{560}{1 + 60\%}$

$$= $350$$
(b) selling price = $560 \times (1 - 35\%)$

$$= $364 > $350$$
(c) selling price = $560 \times (1 - 35\%)$

$$= $364 > $350$$
(c) maximum absolute error = $10 \times 5\% = 0.5$ m
(c) $9.5^{2}m^{2} \le a \ tal area < 10.5^{2}m^{2}$
(d) marks)
5. (a) maximum absolute error = $10 \times 5\% = 0.5$ m
(c) $9.5^{2}m^{2} \le a \ tal area < 10.5^{2}m^{2}$
(b) percentage error of the perimeter
$$= \frac{4 \times 0.5}{40} \times 100\% = 5\% \neq 20\%$$
(c) His claim is incorrect.
(4 marks)

6. (a)
$$\therefore AB:BC:CD:DA=2:1:1:x$$

 $\therefore \angle ADB = 2k, \angle BDC = k, \angle CBD = k, \angle ABD = xk \ (\angle s \text{ prop. to arcs})$
 $2k + k + k + xk = 180^{\circ} (\text{opp. }\angle s, \text{ cyclic qual.})$
 $k(x+4) = 180^{\circ}$
 $\therefore \angle BDC = k = \frac{180^{\circ}}{x+4}$
(b) $\angle ACD = \angle ABD = xk \quad (\angle s \text{ in same segment})$
 $k + xk + 90^{\circ} = 180^{\circ} (\angle s \text{ un of } \Delta)$
 $k(1 + x) = 90^{\circ}$
 $x = 2$
(5 marks)
7. (a) $3y-81-1 \ge 50-5y$
 $y \ge 16.5$
(b) $y \ge 16.5$ and $y < 8$
 $\therefore \text{ No solution.}$
8. Let x be the number of candies owned by Fiona originally.
80 $-x + 4 = 3(x-4)$
84 $-x = 3x-12$
 $x = 24$
The number of candies owned by Fiona originally = 24.
(4 marks)
9. (a) P(a total score of 8 in the game) = P(4.4)
 $= \frac{1}{6} \times \frac{1}{6}$
 $= \frac{1}{36}$
(b) P(a total score of 7 or above in one game)
 $= P(4.4) + P(3.4) + P(4.3)$
 $= \frac{1}{36} + \frac{2}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{2}{6}$
 $= \frac{5}{36}$
P(no prize is awarded in two games)
 $= (1 - \frac{5}{36})(1 - \frac{5}{36})$

$$=$$
 $\frac{961}{1296}$ or 0.742 (cor. to 3 sig. fig.)

(4 marks)

(2 marks)

SECTION A(2): (35 marks) 10. (2) $EE^2 + EC^2 = 2^2 + 4^2$

10. (a)
$$EF^2 + FC^2 = 3^2 + 4^2 = 25$$

 $EC^2 = 5^2 = 25$
 $\therefore EF^2 + FC^2 = EC^2$
 $\therefore \Delta EFC$ is a rt. $\angle \Delta$. (Converse of Pyth. Theorem)
 $\angle EFC = 90^{\circ}$
 $\angle FAE = \angle CBF = 90^{\circ}$ (prop of square)
 $\angle BCF + \angle BFC + 90^{\circ} = 180^{\circ}$ (\angle sum of Δ)
 $\angle BCF + \angle BFC = 90^{\circ}$
 $\angle AFE + 90^{\circ} + \angle BFC^{\circ} = 180^{\circ}$ (adj. \angle s on st. line)
 $\angle AFE + \angle BFC = 90^{\circ}$
 $\therefore \angle AFE = \angle BFC$ (\angle sum of Δ)
 $\therefore \triangle BCF \sim \Delta AFE$ (AAA)
(3 marks)

(b)
$$\therefore \Delta BCF \sim \Delta AFE$$

 $\therefore \frac{CF}{FE} = \frac{BC}{AF}$ (corr. sides, $\sim \Delta$)
 $\frac{4}{3} = \frac{x}{x - FB}$
 $4x - 4FB = 3x$
 $\therefore FB = \frac{x}{4}$ cm
(c) $EB^2 + BC^2 = EC^2$

(c)
$$FB^{2} + BC^{2} = FC^{2}$$

 $(\frac{x}{4})^{2} + x^{2} = 4^{2}$
 $\frac{17}{16}x^{2} = 16$
 $x^{2} = \frac{256}{17}$
Area of $ABCD = x^{2} = \frac{256}{17} \text{ cm}^{2} < 16 \text{ cm}^{2}$. \therefore I don't agree. (2 marks)

11. (a) the numbers are
$$28,34,34,38,39,40,40,41,42,45,50,67$$

mean = 41.5
median = 40 (2 marks)

(b) mean of the bills = $41.5 \times 50 + 100 = 2175 Median of the bills = $40 \times 50 + 100 = 2100 (2 marks)

(c) (i) least possible median =
$$\frac{39+40}{2} = 39.5$$

 $40+41$

greatest possible median =
$$\frac{40+41}{2} = 40.5$$

(ii) ∴ mean is unchanged,
∴ a + b = 2 × 41.5 = 83
∴ median is unchanged,
∴ possible pairs of (a, b) are (40,43), (39,44), (38,45), ...
Least value of the difference between a and b = 3.

(4 marks)

12. (a) Let
$$g(x) = k_1 x^3 + k_2 x^2$$
, where k_1 and k_2 are non-zero constants.

$$\begin{cases} 8 = k_1(2)^3 + k_2(2)^2 \\ -4 = k_1(-1)^3 + k_2(-1)^2 \end{cases}$$

$$\begin{cases} 2 = 2k_1 + k_2 \dots \dots (1) \\ -4 = -k_1 + k_2 \dots \dots (2) \end{cases}$$

From (1) and (2), $k_1 = 2$ and $k_2 = -2$
 \therefore g (x) = $2x^3 - 2x^2$

(3 marks)

(b) (i)
$$h(x) = g(x) + mx + 8$$

= $2x^3 - 2x^2 + mx + 8$
 $h(2) = 0$
 $16 - 8 + 2m + 8 = 0$

$$m = -8$$

(ii) h (x) = 8

 $2x^{3} - 2x^{2} - 8x + 8 = 8$ $2x(x^{2} - x - 4) = 0$ $x = 0 \quad \text{or} \quad x = \frac{1 \pm \sqrt{1 - 4(1)(-4)}}{2} = \frac{1 \pm \sqrt{17}}{2}$

Since $\frac{1 \pm \sqrt{17}}{2}$ are irrational roots, therefore, only 0 is a rational root of h (*x*)= 8. Thus, the equation h(*x*) = 8 has 1 rational root.

(4 marks)

13. (a) (i) Volume of the cylinder

$$= \pi \times 4^2 \times 114$$
$$= 1824\pi \,\mathrm{cm}^3$$

(ii)
$$\frac{\text{volume of smaller cone}}{\text{volume of larger cone}} = \left(\sqrt{\frac{9}{25}}\right)^3 = \frac{27}{125}$$

Volume of the smaller cone

$$= 1824\pi \times \frac{27}{27 + 125}$$

= 324\pi cm³ (3 marks)

S6/Maths/Mock Exam/19-20Solution/P.5

(b) Let r cm and h cm be the base radius and the height of the smaller cone respectively.

$$\frac{h}{h+8} = \frac{3}{5}$$

$$h = 12$$
Volume of the smaller cone = 324π cm³

$$\frac{1}{3} \times \pi \times r^2 \times 12 = 324\pi$$

$$r = 9$$
Curved surface area of the frustum

$$= \pi \times 9 \times \sqrt{9^2 + 12^2} \times \frac{25 - 9}{9}$$

$$= 240\pi$$
 cm²
(3 marks)
14. (a) $2x + y \le 6$
 $x + 2y \le 6$
 $x \ge 0$
 $y \ge 0$
(3 marks)
(b) $6x + 3y \le 18$ (simplify to $2x + y \le 6$)
 $4x + 8y \le 24$ (simplify to $x + 2y \le 6$)
 $x \ge 0$
 $y \ge 0$
Total profit = $\$(15x + 10y)$
At point Total profit($\$$)
(0.0) 0
(0.3) 30
(3.0) 45
(2.2) 50
The maximum profit = \$50 which is not greater than \$50.
 \therefore I don't agree. (4 marks)
SECTION B: (35 marks)
15. (a) $PR \perp PS$ (tangent \perp radius)
 $\therefore PR$ is a tangent to C_2 (converse of tangent \perp radius)
 $\therefore PR$ is a tangent to C_2 (converse of tangent \perp radius)
(1 mark)
(b) $RS = \sqrt{18^2 + 6^2} = 6\sqrt{10}$ cm (1 mark)
(c) In $\triangle PQR, PQ^2 = PR^2 - QR^2 = 18^2 - (\sqrt{360} - x)^2$

In
$$\triangle PQS$$
, $PQ^2 = PS^2 - QS^2 = 6^2 - x^2$

14.

15.

(2 marks)

$$18^{2} - (\sqrt{360} - x)^{2} = 6^{2} - x^{2}$$

$$324 - 360 + 2\sqrt{360}x - x^{2} = 36 - x^{2}$$

$$x = \frac{3\sqrt{10}}{5}$$
(d) $S = (\frac{3\sqrt{10}}{5}, 0)$

$$PQ^{2} = 6^{2} - (\frac{3\sqrt{10}}{5})^{2}$$

$$PQ = \frac{9\sqrt{10}}{5}$$

$$\therefore P = (0, \frac{9\sqrt{10}}{5})$$
Centre of C_{2} = mid-point of $PS = (\frac{3\sqrt{10}}{10}, \frac{9\sqrt{10}}{10})$
Equation of C_{2} is $(x - \frac{3\sqrt{10}}{10})^{2} + (y - \frac{9\sqrt{10}}{10}) = 9$
or
$$\frac{y - 0}{x - \frac{3\sqrt{10}}{5}} \times \frac{y - \frac{9\sqrt{10}}{5}}{x - 0} = -1$$

$$x^{2} + y^{2} - \frac{3\sqrt{10}}{5} - \frac{9\sqrt{10}}{5} = 0$$
(a) (i) $f(x) = k(x^{2} - 8x + 4^{2} - 4^{2}) - 6k^{2} + 2$

$$= k(x - 4)^{2} - 6k^{2} - 16k + 2$$
Vertex of $y = f(x)$ is $(4, -6k^{2} - 16k + 2)$
(ii) $-6k^{2} - 16k + 2 = -4$
 $3k^{2} + 8k - 3 = 0$

(3k-1)(k+3) = 0 $k = \frac{1}{3}$ (rejected) or k = -3 (since f(x) has a maximum value)

(3 marks)

(3 marks)

(b) (i)
$$g(x) = -f(x+6) + 2$$

 $S = (4, -4)$ and $T = (-2, 6)$
Equation of the locus of Q is
 $(x-4)^2 + (y+4)^2 = (x+2)^2 + (y-6)^2$
 $3x-5y+2=0$

(ii) mid-point of OS = (2, -2)

16.

Equation of the \perp bisector of *OS* is

$$\left(\frac{y+2}{x-2}\right)\left(\frac{-4-0}{4-0}\right) = -1$$

x-y-4=0
Solving
$$\begin{cases} x-y-4=0\\ 3x-5y+2=0 \end{cases}$$
,

The coordinates of the circumcentre = (11, 7) which lies in the first quadrant. ... The claim is agreed.

17. (a) $\frac{PR}{\sin(180^\circ - 32^\circ - 105^\circ)} = \frac{12}{\sin 105^\circ}$ PR = 8.472679887= 8.47 cm (cor. to 3 sig. fig.)

(2 marks)

(b) (i) Let *S* be the foot of the perpendicular from *P* to *QR* $PS = PR \sin(180^\circ - 105^\circ)$ = 8.183980321 cm $\sin \angle PSM = \frac{4}{8.183980321}$ $\angle PSM = 29.25909468^\circ$ The angle between *PQR* and the horizontal ground = 29.3° (cor. to 3 sig. fig.)

(ii)
$$\frac{QR}{\sin 32^{\circ}} = \frac{12}{\sin 105^{\circ}}$$
$$QR = 6.583353502 \text{ cm}$$
Area of the shadow MQR
$$= \frac{1}{2} \times QR \times MS$$
$$= \frac{1}{2} \times QR \times PS \cos \angle PSM \quad \text{or} \quad \frac{1}{2} \times QR \times \frac{PM}{\tan \angle PSM}$$
$$= 23.5 \text{ cm}^2$$

(5 marks)

$$= 30000(1.005)^{12n} + 30000(1.005)^{12n-1} + \dots + 30000(1.005)$$

$$= 30000(1.005)[\frac{(1.005)^{12n} - 1}{1.005 - 1}]$$

$$= 6030000[(1.005)^{12n} - 1] \ge 3000000$$

$$(1.005)^{12n} \ge \frac{301}{201}$$

(2 marks)

$$12n \log 1.005 \ge \log(\frac{301}{201})$$

$$n \ge 6.75$$
The least value of $n = 7$
(3 marks)

19. (a) P(the invoice was from store A)

$$= \frac{70}{200} = \frac{7}{20} \text{ or } 0.35 \tag{1 mark}$$

(b) P(the invoice contained an error)

$$= \frac{70 \times 5\% + 80 \times 3\% + 50 \times 4\%}{200}$$

= 0.0395 or $\frac{79}{2000}$ (2 marks)

(c) P(the invoice was from store A, given that it contained an error)

$$= \frac{\frac{70 \times 5\%}{200}}{0.0395} = \frac{35}{79} \text{ or } 0.443 \text{ (cor. to 3 sig. fig.)}$$

20. (a)
$$\log_4 y = -2x + \frac{5}{2}$$

 $y = 4^{-2x+\frac{5}{2}}$
 $y = 32(4^{-2x})$ or $y = 32(2^{-4x})$ (2 marks)
(b) $32(2^{-4x}) \ge 2^x$
 $2^{5x} \le 32$
 $2^{5x} \le 2^5$
 $5x \le 5$
 $x \le 1$
 \therefore The greatest value of $x = 1$.

Paper 2 Answers

1. B	11. D	21. B	31. C	41. C
2. B	12. D	22. B	32. A	42. B
3. D	13. C	23. B	33. A	43. D
4. C	14. D	24. B	34. A	44. D
5. B	15. D	25. C	35. A	45. D
6. A	16. A	26. C	36. C	
7. A	17. D	27. D	37. C	
8. A	18. A	28. D	38. B	
9. C	19. B	29. A	39. C	
10.B	20. C	30. A	40. C	

(2 marks)