Solution to 1617 S6 Physics Mock Exam

Paper 1

Section A

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	Α	В	D	С	В	С	Α	А	D	В	Α	Α	В	D
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	С	С	С	Α	С	D	В	Α	D	В	В	В	D	С

21	22	22
31	32	33
А	D	В

8A 10B 8C 7D

Section B

1.

(a)	f = ma	
	7500 = 1500a	1M
	$a = 5 \text{ m s}^{-2}$	1A

(b)
$$v^2 = u^2 + 2as$$

$$= \left(\frac{50000}{3600}\right)^2 - 2 \times 5 \times 8$$
 1M

$$v = 10.6 \text{ m s}^{-1}$$
 1A

(c)
$$F = 1500 \times \frac{10.6}{0.15} = 1.06 \times 10^5$$
 N 1M+1A

(d) Air bag, seatbelt or collapsible car front 1M+1M

1M(any one corr)+1M

(b) Normal force from the wall

1M

(c)
$$a = \omega^2 r \rightarrow 5g = \left(\frac{2\pi}{T}\right)^2 r$$

$$5 \times 9.81 = \left(\frac{2\pi}{T}\right)^2 \times 2$$
 1M

$$T = 1.27 \text{ s}$$
 1A

- (d) The force on the rotor by the boy is always outward, 1M as it is the reaction force of the normal force on the boy. 1M
 (e) The outward force on the rotor may topple the rotor/ exert a moment on the rotor. 1M
 Another passenger may be seated on the opposite side
 - so as to balance this moment of force. 1M

3. (a) 80°C 1A

(b)0-3 min: KE decreases and PE unchanged1M3-10 min: KE unchanged and PE decreases1M

(c)
$$\ell = \frac{E}{m} = \frac{1500 \times (10 - 3) \times 60}{0.2}$$
 1M

$$m = 0.2$$

= 3.15×10⁶ J kg⁻¹

4.	(a)	When the temperature rises, gas particles vibrate faster.	1M			
		They hit the wall of container more frequently with larger change in momentum.	1M			
		To maintain the same pressure, the volume of the gas increases				
		to reduce the frequency of hitting.	1M			
	(b)	Turn off the burner,	1M			
		and stir the water thoughtfully.	1M			
	(c)	Let the absolute zero be $-x^{\circ}C$.				
		$\frac{22+x}{10} = \frac{90+x}{12} \to x = 318$	1M			

Absolute zero = -318° C 1A

(d) Expansion of the gas is more obvious. 1M

Transfer of heat between the water and the gas is faster. 1M

1A

5.	(a)	Direction of motion of wave is perpendicular to the direction of particles' vibration	n. 1M
	(b)	f = 1/0.4 = 2.5 Hz	lA
		$v = 1.2/0.4 = 3 \text{ m s}^{-1}$	IA
	(c)		IM
	(d)	2.5 periods, upside down	IM+IM
		Direction of vibration C	
	(e)	Tie the other end of the string on a fixed wall,	1M
		from a distance of $n\lambda/2$, where $n = 1, 2, 3 \dots$	1M
6.	(a)	Connect both loudspeaker to the same signal generator.	1M
	(b)	p.d. at $Q = \sqrt{0.8^2 + 0.4^2} - 0.8 = 0.0944$ m	1M
		Destructive interference occurred at Q	
		$p.d. = 0.5\lambda$	1M
		$\lambda = 0.189 \text{ m}$	
		f = 340 / 0.189 = 1800 Hz	1A
	(c)	(i) PQ increases.	1M
		(ii) PQ decreases.	1M
	(d)	He is wrong.	1M
		As the p.d. is always zero along MN,	1M
		loud sound is always observed.	1M
7.	(a)	50 counts \min^{-1}	1M
	(b)	The decay of radium is a random process.	1M
	(c)	Activity $550 \rightarrow 300$	
		$t_{\frac{1}{2}} = 0.9 \min$	1M
	(d)	${}^{224}_{88}\operatorname{Ra} \rightarrow {}^{220}_{86}X + {}^{4}_{2}\alpha$	1M+1M
8.	(a)	Mass defect of radium	1M
		$\ln 2$ $\ln 2$	
	(b)	$k = \underbrace{t}{t} = \frac{1620 \times 365 \times 24 \times 3600}{1620 \times 365 \times 24 \times 3600}$	1M
		$= 1.36 \times 10^{-11} \text{ s}^{-1}$	1A

(c)
$$P = \frac{E}{t}$$
 1M
 $100 = \frac{4.8 \times 10^6 \times 1.6 \times 10^{-19} A}{t^{10}}$

$$A = 1.30 \times 10^{14} \text{ Bq}$$
(d)
$$A = hN$$

(d)
$$A = KN$$

 $1.30 \times 10^{14} = 1.36 \times 10^{-11} N$ 1M
 $N = 9.60 \times 10^{24} = 15.9$ moles 1A

$$N = 9.60 \times 10^{-1} = 15.9 \text{ moles}$$
 IA
 $m = 15.9 \times 0.226 = 3.60 \text{ kg}$ IA

$$m = 15.9 \times 0.226 = 3.60 \text{ kg}$$
(e) No burning / Long-lasting / Stable supply of energy (any two) 1M+1M

(c)
$$V = \frac{\Delta \Phi}{\Delta t} = \frac{A\Delta B}{\Delta t}$$

= $0.1^2 \pi \times 0.02$ 1M
= 6.28×10^{-4} V 1A

10. (a)
$$L = 150 \Omega, M = 100 \Omega, H = 60 \Omega$$
 1M (any one corr) +1M

$$P = \frac{V^2}{R}$$

$$1800 = 220^2 \left(\frac{1}{R} + \frac{1}{150} + \frac{1}{100}\right)$$
1M

$$R = 48.7 \ \Omega$$

(ii)
$$I = \frac{P}{V} = \frac{1800}{220} = 8.18 \text{ A}$$
 1A

Peak value =
$$8.18 \sqrt{2} = 11.5 \text{ A}$$
 1M+1A

11. Wind the wires on the two C-cores with number of turns N_1 and N_2 respectively. 1M Connect the wire (say that with N_1) to the a.c. power supply, and the other (N_2) to the voltmeter.

Put the C-cores touching each other, so that the B-field can pass from one to the other.1MSwitch on the power supply at V_1 . Measure the voltage V_2 by the voltmeter.1MCompare the ratio of N_1/N_2 and V_1/V_2 . They should be the same.1M

1M

Paper 2

Section C: Energy and Use of Energy

M.C.	(8 marks) 1D 2B 3B 4C 5X 6D 7D 8C (1A 2B 2C 3D)					
Struct	tured question (10 marks)						
(a)	To increase the energy of (OR To vibrate)						
	the electrons in the filament 1M						
(b)	Increase the resistance of the filament. 1M						
	Enlarge the area of emitting light.	1M					
(c)	To prevent burning of the filament. 1M						
(d)	LED has longer life/efficiency,	1 M					
	but more expensive/working at d.c. only.	1M					
(e)	(i) $E = \frac{8}{\pi \times 0.02^2} \times \cos 25^\circ$	1M					
	= 5770 lx	1A					
	8						

(ii) efficacy =
$$\frac{8}{1.2/70\%}$$
 1M
= 4.67 lm W⁻¹ 1A

Section D: Medical Physics

M.C	2. (8 marks) 1A 2D 3B 4	D 5B 6C 7A 8B	(2A 3B 1C	2D)						
Stru	ctured question (10 mar	ks)								
(a)	[omitted] 1N	1								
(b)	X-rays emitted from	X-rays emitted from the X-ray tube								
	pass through the arm	and reach an X-ra	ay film.	1M						
	The X-rays are atten	uated by different	amounts							
	when passing throug	1M								
	and hence blacken th	e film by differen	t amounts.	1M						
(c)	(i) Most ultrasou	ind is reflected by	the bone sur	face. 1M						
	(ii) The quality/re	esolution of the in	nage is poor.	1M						
(d)	$0.08 = 250e^{-\mu \cdot 2}$	1M								
	$\mu = 4.02 \text{ cm}^{-1}$	1M								
	HVT = $\frac{\ln 2}{\ln 2} = \frac{\ln 2}{\ln 2}$									
	$\mu = 4.02$									
	= 0.172 cm	1A								
(e)	Shorter time, less expos	sure to radiation	(any one)	1M						

Page 5 of 5