2020-2021	Physics	DSE	Mock	Exam	Marking	Scheme
-----------	---------	-----	------	------	---------	--------

1. (a)	Internal energy of an object is the total energy of its component <u>particles</u> .	1M
	It comprises both the intermolecular PE and random molecular KE.	1M
	Temperature of an object is a measure of the <u>average molecular KE</u> of the object.	1M
(b)	Heat loss $E = ml = (5.4)(2.3 \times 10^{\circ}) = 1.242 \times 10^{7} \text{ J}$	IM
	E 1242-40 ⁷	1.4
	Rate of heat loss $=\frac{E}{t} = \frac{1.242 \times 10}{3.2 \times 3600} = 1078 \text{ W}$	IA
(c)	The foil traps a layer of air around the athlete, hence reducing heat loss by convection;	1 M
	The shiny surface is a poor radiator of heat, hence reducing heat loss by radiation;	1M
2. (a)	$pV = nRT \rightarrow (1.0 \times 10^5)(0.36) = n(8.31)(273+22) \rightarrow n = 14.69$ moles	1M
	No. of air molecules $N = nN_A = (14.69)(6.02 \times 10^{23}) = 8.84 \times 10^{24}$	1A
(b)(i)	Using the pressure law,	
	$\frac{p}{m} = \frac{p'}{m'}$	
	I $I'1.0 \times 10^5 p'$	1M
	$\frac{1}{273+22} = \frac{1}{273+5};$	
	<i>p</i> ' = 94237 Pa	1A
(ii)	As temperature drops, air molecules inside the refrigerator move slower.	1 M
	They <u>collide</u> with the walls of the refrigerator less frequently and with smaller impact forces.	1M
(iii)	min force needed = $A\Delta p = (0.72)(1.0 \times 10^5 - 94237);$	1M
	= 4149 N	IA
3. (a)	The raindrop is first momentarily at rest and hence it experiences no air resistance, so	1M
	it speeds up at the acceleration due to the gravity g.	
	As it going anod during the fall, the sin resistance esting on him also increases. This	1M
	reduces its acceleration.	1 1 VI
	When the air resistance is large enough to balance its weight, it no longer speeds up	1M
(1-)	because the net force acting on him is zero.	1 4
(0)	Internal energy of air/raindrop	IA

4(a)(i)	10(110) = 200(v)	1M	conservation of
			momentum
	$v = 5.5 \text{ m s}^{-1}$	1A	accept -ve
(11)	KE lost = PE gained		
	$\frac{1}{2}mv^2 = mgh$	1M	concernation of
	$\frac{1}{2}m(5.5)^2 = m(9.81)h \implies h = 1.54 m$	1111	conservation of
			energy
	$d = h / \sin 10^\circ = (1.5418) / \sin 10^\circ = 8.88 m$	1A	
(b)	$\frac{1}{2}mv^2 = fs \implies s \alpha v^2$	1M	Relation between
	$s^{2} = 1 (2^{2}) = 4 \text{ m}$	1A	s and v
(c)	There is a horizontal external force from the ground.	1M	Not accept
			conservation
			including the
			ground
5 (a)	T 🚽	1A	all correct
	▼ W		
(b)(i)	$T\cos 30^\circ - ma$		
(0)(1)	$F = -T \sin 30^{\circ}$	1M	$E - T_{cin} 20^{\circ}$
	$T_{net} = 15000$	11/1	$r_{net} - 15000$
	$= (70)(0.81) \tan (30^{\circ})$		
	= (10)(9.01) tunes $= -396$ N	1A	
(ii)	mn ²		
(11)	$F_{net} = \frac{mv}{r}$		
	$(70)u^2$	1M	r = 12 +
	$396 = \frac{(70)^{10}}{24}$		20 sin30°
	$(\frac{24}{2} + 20sin30^{\circ})$		
	$v = 11.1 \text{ m s}^{-1}$	1A	
(iii)	Energy gain = K.E. gain + P.E. gain		1M K.E. gain
	$=\frac{1}{2}(70)(11.1)^2 + (70)(9.81)(20 - 20\cos 30^\circ)$	2M	1M P.E. gain
	$= \frac{2}{6201}$ J	1.4	
()	6201.4×24	1A 1M	
(1V)	$Power = \frac{60}{60}$	1 M	
	= 2481 W+	IA	

8(a)	$\lambda = 1.2 (2/3) = 0.8 \text{ m}$	1M	
(1)	$v = f \lambda = 80 (0.8) = 64 \text{ m s}^{-1}$		1) (1
(b)	displacement	2M	1 M - 10 phase
	Ť		1M smaller
			amplitude
			ampiltude
	+ + + + + + + + + + + + + + + + + + +		
	time		
(c)	vibrator	1A	2 loops
	pulley		
	4°		
	\triangle		
	water		
(d)	Period remains unchanged	1A	
	Amplitude becomes larger	1A	
(e)	$v_1 _ \overline{T_1} _ f\lambda_1 _ \overline{m_1g}$		1M –
	$\frac{1}{v_2} = \sqrt{\frac{1}{T_2}} \implies \frac{1}{f\lambda_2} = \sqrt{\frac{1}{m_2g}}$	1M	new $\lambda = 1.2 \text{ m}$
	$\lambda_1 \qquad \overline{m_1} \qquad 0.8 \qquad \overline{0.8}$		OR
	$\frac{1}{\lambda_2} = \sqrt{\frac{1}{m_2}} \Rightarrow \frac{1}{1.2} = \sqrt{\frac{1}{m_2}}$		λα m
	m = 1.8 kg	1.4	
	mass of water added = $1.8 - 0.8 = 1$ kg	IA	
9. (a)	(i) to the right	1A	
	(ii) away from the observer (from Y to X)	1A	
(b)	$N \cos 30^\circ = mg \ N \sin 30^\circ = BIL$	1M	
	$\tan 30^\circ = \frac{(0.2)(I)(0.1)}{(0.1)}$	11/	Substitution
	(0.04)(9.81)	1 1/1	Substitution
	1 = 11.5 A	14	
(c)	The resistance will be halved and the current will be doubled	1M	
	But the magnetic force (given by BIL) is proportional to the length which is halved.	1M	
	Overall, the magnetic force remains unchanged.		
(d)(i)	Yes.	1A	
	Because they are connected in parallel, and have the same amount of current passing	1M	Same force due
	through and the same magnetic force.		to same current
(ii)	By $P = VI$, the e.m.f. remains the same but the current doubles,	1M	
	$P=2P_0.$	1A	

10. (a)	Yes, from P to Q	1A	
	No	1A	
(b)(i)	A vigorously shaking of the flashlight for about 30 s can provide up to 5 min of light.		
	$1(30) = P(5 \times 60)$		
	$\mathbf{P} = 0.1 \ \mathbf{W}$	1 A	
(ii)	$V = N^{d\phi}$	1M	
` ´	$V = N \frac{dt}{dt}$	1A	
	reak induced e.m.i. = $330 \times 0.0133 = 4.39$ V		
	$rms emf = \frac{4.39}{10} = 3.10 V$	1A	
(iii)	Use a stronger magnet	1 Δ	
(111)	Increase the number of turns of the coil.	1A 1A	
(c)	EPE can be stored in the bumper during impact (KE lost during impact is reduced)	1A	Collision is more
			elastic
	Smaller impact force on the magnet.	1A	
11(a)	It cannot be predicted which puglous will decay	1M	
(h)	$^{210}P_{0} \rightarrow ^{206}Ph \pm {}^{4}H_{0}$	1 A	
(c)(i)	number of nuclei	1M	Correct shape;
	No number of remaining No Po-210 nuclei 0.75No 0.50No 0.50No 0.25No	1M	sum of the values at each moment $\approx N_0$
	time		
(ii)	fraction of Po that remains undecayed $=\frac{1}{1+7}=\frac{1}{8}$;	1M	
	$\frac{N_0}{8} = N_0 e^{-kt} \Rightarrow 0.125 = e^{-k(415.2)}$	1M	
	$k = 5.01 \times 10^{-3} \text{ day}^{-1} = 5.80 \times 10^{-8} \text{ s}^{-1}$	1A	