Questions	Solutions
B(1-8)	CDBB ACCB
9.(a)	The spectrum consists of discrete lines at certain wavelengths.
	Each line corresponds to the photons emitted when electrons transit from a high energy level to a lower energy level.
	This indicates the atomic energy levels have discrete values.
(b)	energy of carried by a photon of wavelength 486.1 nm $= \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3 \times 10^{8})}{486.1 \times 10^{-9}} = 4.092 \times 10^{-19} \text{ J} = 2.558 \text{ eV};$ 2.558 eV = (-13.6 eV) $\left(\frac{1}{n^2} - \frac{1}{2^2}\right);$
	$n = 4.02 \approx 4 \Rightarrow$ the line of 486.1 nm is due to the transition from $n = 4$ to $n = 2$
(c)(i)	KE of emitted electrons = $24.86 - 13.6 = 11.26 \text{ eV}$ = $1.80 \times 10^{-18} \text{ J}$; $\frac{1}{2}mv^2 = 1.80 \times 10^{-18} \Rightarrow \frac{1}{2}(9.11 \times 10^{-31})v^2 = 1.80 \times 10^{-18}$ $v = 1.989 \times 10^6 \text{ m s}^{-1}$
(ii)	$\lambda = h / (mv)$
	$\approx 3.659 \times 10^{-10} \text{ m}$
C(1-8)	AACD ABBB
9.(a)	$mass = \frac{354 \times \frac{16}{100}}{0.150}$ = 377.6 kg
(b)	Work done against friction = Energy output $- K.E{final}$
	$= Pt - \frac{1}{2}mv^{2}$ = (211×1000)(5.3) - $\frac{1}{2}$ (1611)($\frac{100}{3.6}$) ² = 497000 J
(c)	Friction from the ground Friction in the moving part of the car Air resistance
(d)	Overall energy efficiency = (0.38)(0.95)(0.79)(0.80) ×100%
(e)	Yes. Although the overall efficiency in converting the fuel to mechanical energy for the electric car is 22.8 % which is just slightly lower than that of the car with internal combustion engine which is 25 %, the electric car is more energy efficient because part of the KE can be saved by the regenerative system of the electric car during braking.

2020-2021 DSE Physics Mock Paper 2 Marking Scheme