Final Examination 2021 - 2022 Mathematics Compulsory Part Paper 2

Form	C:-

Name: Class:

- Time allowed: 1 hour and 15 minutes
- Answer ALL questions. All the answers must be marked on the MC answer sheet with pencil or marks will be deducted.
 The diagrams are not necessarily drawn to scale.

- Section A

 1. $\frac{(3^n)(4^n)}{6^{2n}} =$
 - A. 1.
 - B. $\frac{1}{3^n}$.
 - C. $\frac{1}{2^n}$. D. 2^n .

2.
$$(a+b)^2(a-b) =$$

- A. $a^3 a^2b ab^2 b^3$. B. $a^3 a^2b + ab^2 b^3$. C. $a^3 + a^2b ab^2 b^3$. D. $a^3 + a^2b + ab^2 b^3$.

3. If
$$\frac{h}{h-k} = \frac{2}{2h+k}$$
, then $k =$

- A. $\frac{2h(1-h)}{h+2}$ B. $\frac{2h(h-1)}{h+2}$ C. $\frac{2h(1+h)}{h-2}$ D. $\frac{2h(1+h)}{2-h}$
- 4. If 0.054546 < x < 0.054553, which of the following is true?
 - A. x = 0.0545 (correct to 3 decimal
- A. x = 0.0545 (correct to 3 decimal places)

 B. x = 0.0545 (correct to 3 significant figures)

 C. x = 0.0545 (correct to 4 decimal places)

 D. x = 0.05455 (correct to 4 significant figures)

 F.6 Mathematics (Compulsory Part) Final Exam (2021 2022)

 $5. \quad \frac{9}{d-3} - \frac{8}{d+4} =$

A. $\frac{d-12}{(d-3)(d+4)}$ B. $\frac{d+1}{(d-3)(d+4)}$ C. $\frac{d+12}{(d-3)(d+4)}$

D. $\frac{d+60}{(d-3)(d+4)}$

6. If a and b are constants such that $(2x-a)^2 + 4 \equiv 4(x-2)(x-1) + b,$ then b =

A. -11. B. -5. C. 5. D. 11.

7. Let $g(x) = 4x^2 - 2x - 1$. If g(3a) = 10a, find a.

A. $a = -\frac{1}{2}$ or $\frac{1}{18}$ B. $a = -\frac{1}{3}$ or $\frac{1}{12}$ C. $a = -\frac{1}{12}$ or $\frac{1}{3}$ D. $a = -\frac{1}{18}$ or $\frac{1}{2}$

- 8. Let $f(x) = 2x^3 ax + b$. $x^2 4$ is a factor of f(x). Find the remainder when f(x) is divided by x 1.
 - A. -6 B. -1 C. 1 D. 6
- The base radius of a right circular cylinder is increased by 20%, while its height is decreased by p%. If the volume of the cylinder is increased by 8%, find p.
 - A. 10 B. 20 C. 25 D. 31
- 10. If p and q are positive numbers such that $\frac{p+q}{10p+2q} = \frac{q-p}{5p-q}$, then p:q=
 - A. 1:3. B. 3:5. C. 5:3. D. 3:1.

In the figure, the equations of the straight lines L_1 and L_2 are ax+by-2=0 and px+2y-q=0 respectively. Which of the following are true?

- I. b < 0
- II. q < -2III. 2p + q > 0

- A. I and II only
 B. I and III only
 C. II and III only
 D. I, II and III

F.6 Mathematics (Compulsory Part) Final Exam (2021 – 2022)

- 12. Find the greatest integer satisfying $\frac{3x}{2} + 18 < 1 - 3x \text{ or } 5 - 2x > 16$.

 - A. -3 B. -4 C. -5 D. -6
- 13. If r varies directly as the square root of s and inversely as the cube root of t, which of the following must be constant?
 - A. $\frac{s^3}{t^2r^6}$
 - $\frac{s^2}{t^3r^6}$
 - C. $\frac{s^3r^6}{t^3}$
 - D. $\frac{s^2r^6}{t^3}$

In the figure, the 1st pattern consists of 5 dots. For any positive integer n, the (n+1)th pattern is formed by adding 6 dots to the nth pattern. Find the number of dots in the 8th pattern.

- A. 41 B. 47 C. 53 D. 59

- 15. A frustum is made by cutting off the upper part of a right circular cone with base radius 42 cm. The radius of the top circular surface of the frustum is 24 cm. The volume of the frustum is 8370π cm³. Find the height of the frustum. frustum.
 - A. 6.1 cm B. 7.5 cm
- C. 10 cm D. 17.5 cm

16.

In the figure, O is the centre of the sector OBC. A is a point on OB. OA = 10 cm, OC = 17 cm and AC = 9 cm. Find the area of the shaded region correct to 3 significant figures.

- A. 21.3 cm² B. 27.2 cm² C. 29.6 cm² D. 34.8 cm²

A $\frac{1}{B}$ C

In the figure, ABC and AEF are straight lines. $\triangle ABF - \triangle DBC$. BF intersects CE at D. AF = 143 cm. BD = 15 cm and DF = 117 cm. Find the area of $\triangle DEF$.

- A. 2430 cm² B. 2852 cm² C. 2970 cm² D. 3630 cm²

- 18. *ABCDEF* is a regular hexagon. Which of the following are true?
 - $\angle ACB = 30^{\circ}$.

 - II. $\triangle CFE \cong \triangle CFD$.

 III. $\triangle ACE$ is an equilateral triangle.

 - A. I and II only
 B. I and III only
 C. II and III only
 D. I, II and III

19.

In the figure, ABCD and PQRS are straight lines. AB = BC = CD and $AP \mid BQ \mid CR \mid /DS$. AP = 8 cm and DS = 12 cm. Find the ratio of the area of BCRQ to the area of ADSP.

- A. 1:6 B. 1:4 C. 1:3 D. 1:2

- 20.

B EC

ABCD is a rectangle. E is a point on BD such that $AE \perp BD$. If $\angle BDC = 76^{\circ}$, find $\angle CAE$.

- A. 14° B. 38° C. 52° D. 62°

21.

B

In the figure, BE cuts AD and AC at F
and G respectively. CDE is a straight
line. AD //BC. Suppose BG : GF : FE= 5 : 3 : 8. Find the ratio of the area of ΔABG to the area of ΔDEF .

- A. 3:4 B. 15:16 C. 45:46 D. 1:1

F.6 Mathematics (Compulsory Part) Final Exam (2021 – 2022)