INTERNAL EXAM 2016-2017 MATH COMPULSORY PART PAPER 1

ST.PAUL'S COLLEGE

Internal Examination 2016-2017

MATHEMATICS Compulsory Part PAPER 1

Section A

Question-Answer Book

 $(2^{1}/4 \text{ hours})$

This paper must be answered in English

INSTRUCTIONS

- 1. Write your Name, Class and Class Number in the spaces provided on Page 1.
- 2. This paper consists of THREE sections, A(1), A(2) and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your Name and mark the question number box on each sheet, and fasten them with string INSIDE this book.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 7. The diagrams in this paper are not necessarily drawn to scale.

Name				
Group	G1 PSK	G2 KWN G2 KWN G5 PCC G8 PSK	G3 I	FBL
Class			()

	Marker's Use Only	Examiner's Use Only
	Marker No.	Examiner No.
Question No.	Marks	Marks
1–2	/6	
3–4	/8	
5-6	/9	
7–8	/8	
9	/4	
10	/7	
11	/7	
12	/8	
13	/7	
14	/6	
Total	/70	

- 1 -

SECTION A(1) (35 marks)

1. If $a^n = 4$ and $b^m = 7$, find $\frac{(2a^{-n})^{-3}(b^m)^2}{(8a^n)^2(2b^m)^{-1}}$, where a,b, m and n are positive numbers.

 $\frac{(2a^{-n})^{-3}(b^{m})^{2}}{(8a^{n})^{2}(2b^{m})^{-1}} = \frac{2^{-3(a^{n})^{3}}(b^{m})^{2}}{8^{2}(a^{n})^{2}2^{-1}(b^{m})^{-1}}$ $= \frac{2^{-3}(4)^{3}.7^{2}}{8^{2}(4)^{2}2^{-1}(7^{-1})}$ $= 7^{3}/8^{2} = 343/64 \text{ (or ≈ 5.36)}$ (3 marks)

2. Evaluate $1001_2 - 111_2$. Express your answer in both binary numeral and decimal numeral. (3 marks) $1001_2 - 111_2 = 10_2$

 $10_2 = 1 \times 2^1 + 0 \times 2^0 = 2$

Answers written in the margins will not be marked.

3.	(a)	Factorize $4x^2 + 15x - 4$.	
	(b)	Factorize $4(y + 1)^4 + 15(y + 1)^2 - 4$.	
		(4 marks)	
	(a)	$4x^2 + 15x - 4 = (4x - 1)(x + 4)$	
	(b)	From (a) $4((y+1)^2)^2 + 15(y+1)^2 - 4$	
		$= (4(y+1)^2 - 1)((y+1)^2 + 4)$	
		$= (2(y+1) - 1)(2(y+1) + 1)((y+1)^{2} + 4)$	
		$= (2y+1)(2y+3)(y^2+2y+5)$	
-			
4.		cost of an item X is \$100. To attract the customers, Peter makes a 20% discount on red price, but he still wants to have a 10% profit. What should be the marked price? (4 marks)	
	mark Let \$y	ed price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price	
-	mark Let \$y y(0.8)	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1	
-	mark Let \$y y(0.8) y = 13	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1 7.5	
-	mark Let \$y y(0.8) y = 13	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1	
-	mark Let \$y y(0.8) y = 13	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1 7.5	
-	mark Let \$y y(0.8) y = 13	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1 7.5	
-	mark Let \$y y(0.8) y = 13	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1 7.5	
-	mark Let \$y y(0.8) y = 13	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1 7.5	
-	mark Let \$y y(0.8) y = 13	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1 7.5	
-	mark Let \$y y(0.8) y = 13	ted price, but he still wants to have a 10% profit. What should be the marked price? (4 marks) be the marked price = 100×1.1 7.5	

Answers written in the margins will not be marked.

– 3 –

5. Jo's pocket contains 20 coins. They are either \$10 coins or \$1 coins. Jo knows that all his coins in his pocket cannot exceed one hundred and twenty dollars. Find the maximum number of \$10 coins in his pocket.

(4 marks)

Let there are n 10 coins.	
$\frac{10n + (20 - n) \le 120}{2 - (100)}$	
$\frac{9n \le 100}{\le 100/9}$	
<u>n ≤ 100/9</u>	
The max. number of \$10 coins is 11.	
A conical cone has base radius r cm and the height of it is h cm. The	volume of the cone
equals to the volume of a sphere with radius r cm.	
(a) Find the ratio of h to r.	
(b) Join claims that the total surface area of the cone will be more that	in the surface area o
the sphere by at least 25%. Do you agree? Explain your answer.	<i>.</i>
	(5 marks)
(a) Vol. of the cone = $(1/3)\pi r^2 h$	
Vol. of the sphere = $(4/3)\pi r^3$	
$\frac{(1/3)\pi r^2 h = (4/3)\pi r^3}{1}$	
h = 4r	
h: r = 4:1	
(b) Total surface area of the cone = $\pi r^2 + \pi r^2 \sqrt{17}$	
Surface area of the sphere = $4\pi r^2$	
$\frac{\pi r^2 (1 + \sqrt{17}) - 4\pi r^2}{4\pi r^2} \times 100\% \approx 28.1\%$	
$\frac{4\pi r^2}{\text{Yes. I agree}} \sim 10070 \sim 20.170$	

	7. In the figure, O is the centre of the circle. A, C, B and D are points on the circle. C is the mid-point on the arc ACB. If \angle CDB = v°, major \angle AOB = u° and u = 6v, find u and v. (4 marks)
$2AOC=2 \angle CDB(\angle at centre twice \angle at circumference)$ $360^{\circ} - u^{\circ} = 4v^{\circ}$ $360 - 6v = 4v$ $v = 36$ $u = 216$ 8. F(x) = A - Bcosx where A, B are positive constants. If the maximum and minimum values of F(x) are 7 and 3 respectively, find A and B. (4 marks) Max. of F(x) = A + B Min. of F(x) = A - B A + B = 7 $A - B = 3$	$\angle AOB = 360^{\circ}$ - u° (L. at a point)
$360^{\circ} - u^{\circ} = 4v^{\circ}$ $360 - 6v = 4v$ $v = 36$ $u = 216$ 8. F(x) = A - Bcosx where A, B are positive constants. If the maximum and minimum values of F(x) are 7 and 3 respectively, find A and B. (4 marks) Max. of F(x) = A + B Min. of F(x) = A - B A + B = 7 A - B = 3	$\angle AOC = \angle COB(equal arc equal \angle)$
360 - 6v = 4v $v = 36$ $u = 216$ 8. F(x) = A - Bcosx where A, B are positive constants. If the maximum and minimum values of F(x) are 7 and 3 respectively, find A and B. (4 marks) Max. of F(x) = A + B Min. of F(x) = A - B A + B = 7 A - B = 3	
v = 36 $u = 216$ 8. $F(x) = A - Bcosx$ where A, B are positive constants. If the maximum and minimum values of $F(x)$ are 7 and 3 respectively, find A and B.Max. of $F(x) = A + B$ Min. of $F(x) = A - B$ $A + B = 7$ $A - B = 3$	
u = 2168. $F(x) = A - Bcosx$ where A, B are positive constants. If the maximum and minimum values of $F(x)$ are 7 and 3 respectively, find A and B. (4 marks)Max. of $F(x) = A + B$ Min. of $F(x) = A - B$ $A + B = 7$ $A - B = 3$	
8. $F(x) = A - Bcosx$ where A, B are positive constants. If the maximum and minimum values of F(x) are 7 and 3 respectively, find A and B. (4 marks) Max. of F(x) = A + B Min. of F(x) = A - B A + B = 7 A - B = 3	
of F(x) are 7 and 3 respectively, find A and B. (4 marks) Max. of F(x) = A + B Min. of F(x) = A - B A + B = 7 A - B = 3	<u>u - 210</u>
	of $F(x)$ are 7 and 3 respectively, find A and B. (4 marks) Max. of $F(x) = A + B$ Min. of $F(x) = A - B$ A + B = 7 A - B = 3

9. When $2x^3 + Ax^2 + 6x + B$ is divided by 2x, the remainder is 3 and the	quotient is
$x^2 - x + 3$, find A and B.	
$2^{3} + 4^{2} + 6^{2} + D = 2^{2} + 2^{2} + 2^{2}$	(4 marks)
$\frac{2x^3 + Ax^2 + 6x + B \equiv 2x(x^2 - x + 3) + 3}{\equiv 2x^3 - 2x^2 + 6x + 3}$	
= 2x - 2x + 6x + 3 By comparing coef., A = -2, B = 3	
By comparing coci., A = -2, B = 5	
	-

SECTION A(2) (35 marks)

10. Peter is a salesman and his monthly salary consists of two parts. One part is the basic salary which is a constant and the other part is his commission which is proportional to the income from his selling. Peter's salary in June was \$15000. In July, Peter sold twice as much as what he had sold in the month before. His salary was \$18000 in July. In August, Peter could only sell half of what he had sold in June. Find the salary of Peter in August.

(7 marks)

Let C be the basic salary, I is the income from selling and S be the monthly salary S = C + kI, where k is a constant If Peter income from his selling is I₁ in June, then in July is $2I_1/2$

 $15000 = C + kI_1$ $18000 = C + K(2I_1)$ $kI_1 = 3000, C = 12000$ $C + (kI_1)/2 = 12000 + 3000/2 = 13500$

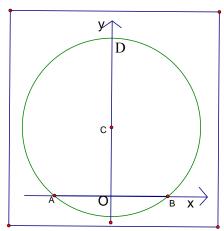
His salary in Aug. is \$13500.

11. y = g(x) is a quadratic function. The y-intercept of g(x) is 4 and the x-intercepts are -2 and 6. Paul claims that g(x) must have a maximum value at x = 2 without sketching the graph of y = g(x). Do you agree with him? Explain your answer. Find the maximum or the minimum value of y.

(7 marks)

	(/ marks)
y=A(x+2)(x-6), where A is a constant	
when x=0, y=4	
∴ 4=A(2)(-6)	
A = -1/3	
f(x) = -1/3 (x+2)(x-6)	
$f(x) = -1/3 (x-2)^2 + 16/3$	
: coefficient of $x^2 = -1/3 < 0$	
\therefore f(x) will obtain maximum value at x=2	
I agree with him	
<u> </u>	

Answers written in the margins will not be marked.


Answers written in the margins will not be marked.

– 8 –

12. (a) Show that $\frac{1}{2}$ is a root of the equation : $2x^3 + 7x^2 + 2x - 3 = 0$ and	1
hence factorize $2x^3 + 7x^2 + 2x - 3$.	
	(4 marks)
(b) Someone claims that the trigonometric equation	(Thanks)
$2\cos^3\theta + 4\cos^2\theta + 2\cos\theta = 3\sin^2\theta$, $0^\circ < \theta < 360^\circ$, has exactly 3	roots.
Do you agree? Explain your answer.	
	(4 marks)
Let $f(x) = 2x^3 + 7x^2 + 2x - 3$	(
$f(1/2)=2(1/2)^3+7(1/2)^2+2(1/2)-3=0$	
By factor theorem, $1/2$ is a root of $2x^3+7x^2+2x-3=0$	
$2x^3+7x^2+2x-3\equiv(2x-1)(x^2+Ax+B)$	
By comparing coefficient, B=3, A=4	
$\therefore 2x^3 + 7x^2 + 2x - 3 \equiv (2x - 1)(x^2 + 4x + 3)$	
$2x^{3}+7x^{2}+2x-3\equiv(2x-1)(x+3)(x+1)$	
$2\cos^3\theta + 4\cos^2\theta + 2\cos\theta = 3(1-\cos^2\theta)$	
$2\cos^3\theta + 7\cos^2\theta + 2\cos\theta - 3 = 0$	•
$(2\cos\theta-1)(\cos\theta+3)(\cos\theta+1)=0$	
$\theta = 60^{\circ}, 300^{\circ} \text{ or } 180^{\circ}$	
∴ it has exactly 3 solution	-

- 13. (a) Find the equation of a circle centred at C(0, 3) and passes through the points A(-4, 0) and B(4, 0). (3 marks)
 - (b) The circle is drawn as shown in the diagram below. D is a point on the y-axis and the circle. If P is a moving point within the circle and its distance from D and the chord AB are the same. Describe and sketch the locus on the diagram below.

(The equation of the locus is not required.) (4 marks)

Radius of the circle= $\sqrt{(0-4)^2 + (3-0)^2} = 5$ Equation of circle: $(x-0)^2+(y-3)^2=5^2$

 $x^2+y^2-6y-16=0$

it will be part of a parabola with the two end points on the circle and passing through (0,4)

Answers written in the margins will not be marked.

•
•
 -
-

 14. A game is played by tossing a fair coin first and then a fair die. If a played will not be allowed to toss the die and has to leave; if the player gets a hicknose one of the two options: (i) He receives 10 dollars and leaves. (ii) He does not receive any money but can toss the die. If he gets the n receives 100 dollars; otherwise he receives no money. The player has to make a decision before playing the game. If you are th option will you take? Explain your answer. 	ead, he can number 5, he
option win you take. Explain you answel.	(6 marks)
The expected value when he chooses (1)	
=(0)(1/2)+10(1/2)	
=5	
The expected value when he chooses (2)	
=(0)(1/2)+(1/2)[(5/6)(0)+(1/6)(100)]	
=100/12	
$\frac{: 100/12 > 5}{: I \text{ should choose (2)}}$	
··· I should choose (2)	
	-

END OF SECTION A