There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$\frac{2}{a-5} + \frac{1}{2-a} =$$

A.
$$\frac{-a-1}{(a-5)(a-2)}$$
.

B.
$$\frac{a+1}{(a-5)(a-2)}$$
.

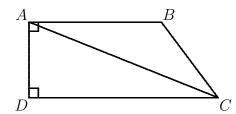
C.
$$\frac{3(3-a)}{(a-5)(a-2)}$$
.

D.
$$\frac{3(a-3)}{(a-5)(a-2)}$$
.

- 2. If a,b and c are non-zero constants such that $x(ax+3b)+5b\equiv a(x^2+2x)+3c$, then a:b:c=
 - A. 2:3:5.
 - B. 3:2:5.
 - C. 9:6:10.
 - D. 10:15:9.
- 3. There are 782 students in a secondary school. If the number of boys is 30% less than that of girls, then the number of boys is
 - A. 322.
 - B. 340.
 - C. 442.
 - D. 460.
- 4. If the price of a flat is decreased by 30% and then increased by 40%, then its price is
 - A. decreased by 88%.
 - B. decreased by 58%.
 - C. decreased by 2%.
 - D. increased by 10%.

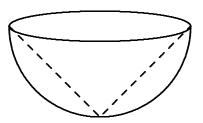
- 5. The simple interest on a sum of money at an interest rate of r% per annum for 3 years is equal to the compound interest on the same amount of money at an interest rate of 6% per annum for 3 years compounded half-yearly. Find r, correct to 2 significant figures.
 - A. 3.2
 - B. 6.4
 - C. 6.5
 - D. 14
- 6. The costs of candy of brand A and brand B are \$120/kg and \$288/kg respectively. If x kg of candy of brand A and y kg of candy of brand B are mixed so that the cost of the mixture is \$216/kg, then x:y=
 - A. 3:7.
 - B. 3:4.
 - C. 4:3.
 - D. 7:3.
- 7. If z varies directly as x and inversely as the cube root of y , which of the following must be constant?
 - A. $\frac{xz}{\sqrt[3]{y}}$
 - B. $\frac{x^3}{yz^3}$
 - C. $\frac{x}{y^3z}$
 - D. $\frac{x^3z^3}{y}$
- 8. A piece of work can be completed by Alan alone in m days. If Alan and Benny work together, the piece of work can be completed in n days. If Benny works alone, how long will be take to complete the piece of work?
 - A. $\frac{m-n}{mn}$ days
 - B. $\frac{mn}{m-n}$ days
 - C. $\frac{m+n}{mn}$ days
 - D. $\frac{mn}{m+n}$ days

- 9. If $2u v 7 = \log u + \log v = 3$, then u =
 - A. 25.
 - B. 25 or -20.
 - C. $\frac{5+\sqrt{85}}{2}$.
 - D. $\frac{5+\sqrt{85}}{2}$ or $\frac{5-\sqrt{85}}{2}$.
- 10. If a > 0 > b > c, which of the following may NOT be true?
 - I. ac > bc
 - II. $a^2 > b^2$
 - III. $b^2 < c^2$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 11. Solve $2x 1 \le x < 6 2x$.
 - A. $x \leq 1$
 - B. x < 2
 - C. $1 \le x < 2$
 - D. No real solutions
- 12. It is given that the H.C.F. and the L.C.M. of three polynomials are a^2b^4 and $6a^3b^5c^7$ respectively. If two of the polynomials are $3a^2b^5$ and $6a^2b^4c^3$, then the third one is
 - A. $a^2b^5c^7$.
 - B. $a^3b^4c^7$.
 - C. $2a^2b^4c^4$.
 - D. $2a^3b^5c^4$.


13. 0.0024735689 =

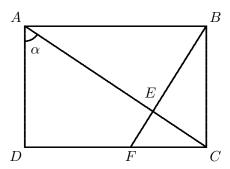
- A. 0.00247 (correct to 3 decimal places).
- B. 0.002473 (correct to 4 significant figures).
- C. 0.0024736 (correct to 5 decimal places).
- D. 0.00247357 (correct to 6 significant figures).

- 14. In the figure, the 1st pattern consists of 6 dots. For any positive integer n, the (n+1)th pattern is formed by adding (n+3) dots to the nth pattern. Find the number of dots in the 7th pattern.
 - A. 36
 - B. 44
 - C. 45
 - D. 55



- 15. In the figure, $\angle ADC = \angle BAD = 90^{\circ}$. If AB = 9 cm, AD = 8 cm and BC = 10 cm, then AC =
 - A. 13 cm.
 - B. 15 cm.
 - C. 17 cm.
 - D. 23 cm.

16. In the figure, a wooden container is made from drilling a right conical hole in the middle of a hemisphere. If the volume of the wood of the container is 128π cm³, find the radius of the hemisphere correct to the nearest 0.1 cm.

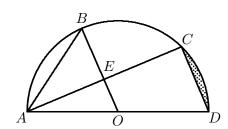


17. In the figure, ABCD is a rectangle. Let F be a point lying on CD such that AC and BF are perpendicular to each other and intersect at point E. Find $\frac{BE}{EF}$.

B.
$$\cos^2 \alpha$$

C.
$$\sin^2 \alpha \cos^2 \alpha$$

D.
$$\tan^2 \alpha$$


18. In the figure, O is the centre of the semi-circle OABCD. OB and CD are parallel to each other and OB intersects AC at point E. If AB = 10 cm and BE = 6 cm, find the area of the shaded region correct to the nearest 0.01 cm².

A.
$$0.13 \text{ cm}^2$$

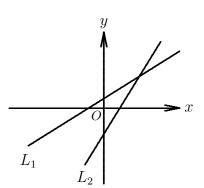
B.
$$0.66 \text{ cm}^2$$

C.
$$1.04 \text{ cm}^2$$

D.
$$5.09 \text{ cm}^2$$

- 19. $\frac{1}{(1+\sin(90^{\circ}+\theta))(1+\sin(270^{\circ}-\theta))} + \frac{1}{\cos^{2}(180^{\circ}-\theta)} =$
 - A. 0.
 - B. $\frac{1}{\tan^2 \theta}$.
 - C. $\frac{\tan^2 \theta}{\sin^4 \theta}$.
 - D. $\frac{1 2\sin^2\theta}{\sin^2\theta\cos^2\theta}$

- 20. Let $f(x) = 3x^2 + mx + 2m$, where m is a constant. If the axis of symmetry of the graph of y = f(x) is x = -1, find the y-coordinate of the vertex of the graph of y = f(x).
 - A. -3
 - B. 6
 - C. 9
 - D. 12

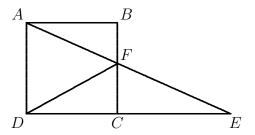

21. In the figure, the equations of the straight lines L_1 and L_2 are ax + y = b and x + cy = 1 respectively. Which of the following must be true?

I.
$$a < 0$$

II.
$$b > 0$$

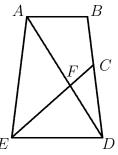
III.
$$ac < 1$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III



22. In the figure, ABCD is a square. DC is produced to E. AE and BC intersect at F. If $\angle CEF = 36^{\circ}$, find $\angle CDF$ correct to the nearest degree.

$$C. 24^{\circ}$$


23. In the figure, AFD, BCD and CFE are straight lines. It is given that AB//ED, AB:ED=5:7 and BC:CD=2:3. If the area of $\triangle CDF$ is 63 cm², find the area of $\triangle AEF$.

A.
$$187 \text{ cm}^2$$

B.
$$203 \text{ cm}^2$$

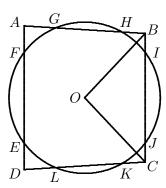
C.
$$210 \text{ cm}^2$$

$$D.~250~\mathrm{cm}^2$$

24. ABCD is a rhombus. E and F are the points on AB and BC respectively. DE and DF cut AC at G and H respectively. If AG = GH = HC and $\angle ADC = 135^{\circ}$, which of the following must be true?

I.
$$\angle GDH = 45^{\circ}$$

II.
$$\triangle AGD \cong \triangle CHD$$


III. E is the mid-point of AB.

- A. I only
- B. II only
- C. I and III only
- D. II and III only

25. In the figure, O is the centre of the circle EFGHIJKL. The quadrilateral ABCD intersects the circle at E, F, G, H, I, J, K and L. If $\angle EDL = 84^{\circ}$, $\angle BOC = 74^{\circ}$ and EF = GH = IJ = KL, then $\angle FAG =$

B.
$$78^{\circ}$$
.

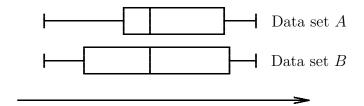
- 26. The coordinates of the points A and B are (2,4) and (-1,3) respectively. If P is a moving point in the rectangular coordinate plane such that PA = AB, then the locus of P is a
 - A. straight line.

27. Let O be the origin. The straight line 3x - 4y - 24 = 0 cuts the x-axis and y-axis at A and B respectively. Find the equation of the inscribed circle of $\triangle OAB$.

A.
$$x^2 + y^2 - 4x + 3y = 0$$

B.
$$x^2 + y^2 + 4x - 3y = 0$$

C.
$$x^2 + y^2 - 4x + 4y + 4 = 0$$


D.
$$x^2 + y^2 + 4x - 4y + 4 = 0$$

- 28. There are 4 cards numbered 1, 3, 5, 7 in bag A and 3 balls numbered 1, 2, 4 in bag B. If one card is drawn from bag A and one ball is drawn from bag B at random, find the probability that the sum of the numbers drawn is a prime number.
 - A. $\frac{5}{12}$
 - B. $\frac{3}{7}$
 - C. $\frac{1}{2}$
 - D. $\frac{7}{12}$
- 29. Consider the following set of data.

$$20\ 25\ 28\ 28\ 30\ 33\ 34\ 35\ 36\ m\ n$$

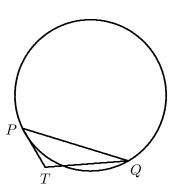
The mean and the median of the above data are 32 and 33 respectively. Which of the following must be true?

- I. m + n = 83
- II. $m \ge 36$
- III. $n \le 50$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 30. Consider the following box-and-whisker diagrams.

Which of the following must be true?

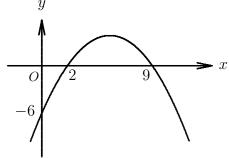
- I. The upper quartile of the data set A is less than that of the data set B.
- II. The inter-quartile range of the data set A is less than that of the data set B.
- III. The variance of the data set A is less than that of the data set B.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Section B

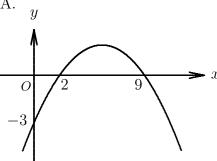

31.
$$20 + 11 \times 16^4 + 4102 \times 16^6 =$$

- A. $10060A014_{16}$.
- B. $10060B014_{16}$.
- C. $10060A0014_{16}$.
- D. $10060B0014_{16}$.
- 32. Which of the following is/are NOT true?
 - I. The real part of $\frac{1}{3+2i}$ is $\frac{3}{13}$.
 - II. The imaginary part of 2-5i is -5i.
 - III. $i^{2n} = -1$ for all positive integers n.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 33. Which of the following are true?
 - I. $12345^{6789} < 6789^{12345}$
 - II. If b > c, then $\log_{\frac{1}{2}} b > \log_{\frac{1}{2}} c$.
 - III. $\log_a b = (\log_a c) (\log_c b)$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 34. Let x_n be the *n*th term of an arithmetic sequence. If $x_{15} = -20$ and $x_{24} = -56$, which of the following must be true?
 - I. The common difference is less than -1.
 - II. The 10th term is a natural number.
 - III. The sum of the first 19 terms is positive.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

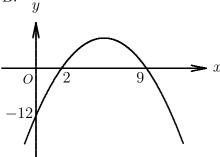
35. Consider the following system of inequalities: $\begin{cases} y - x \ge -5 \\ 2x + y \le 16 \\ x \ge 1 \\ y \le 4 \end{cases}$.


Let R be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in R, then the difference in the greatest value and the smallest value of 8x - y - 2019 is

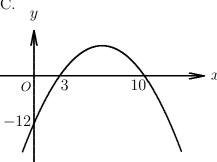
- A. 40.
- B. 42.
- C. 50.
- D. 54.
- 36. In the figure, P and Q are points on the circle. TP is the tangent to the circle at P. TQ is a straight line. If $\angle PTQ=105^\circ$, TQ=7 cm and PQ=9 cm, find the radius of the circle.
 - A. 5.99 cm
 - B. 6.10 cm
 - C. 6.36 cm
 - D. 7.39 cm

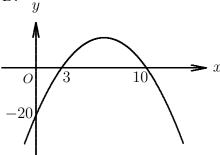

- 37. Let O be the origin. The coordinates of P are (8,24) and Q lies on the positive x-axis. If the coordinates of the circumcenter of $\triangle OPQ$ are (19,7), then the y-coordinate of the orthocenter of $\triangle OPQ$ is
 - A. 2.
 - B. 7.
 - C. 8.
 - D. 10.

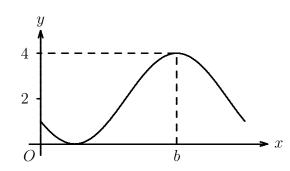
38. The figure shows the quadratic graph of y = f(x + 1).



If g(x) = 2f(x), which of the following may represent the graph of y = g(x)?

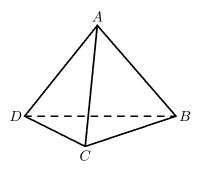

Α.


В.


C.

D.

- 39. Let a and b be constants. If the figure shows the graph of $y = a\cos(2x^{\circ} 60^{\circ}) + 2$, then
 - A. a = -2 and b = 120.
 - B. a = -2 and b = 210.
 - C. a=2 and b=120.
 - D. a = 2 and b = 210.


40. The figure shows a tetrahedron ABCD where 3AB = 2AC. If ACD and BCD are equilateral triangles, find the angle between AB and the plane BCD correct to the nearest degree.

B. 41°

 $C.~67^{\circ}$

D. 71°


41. In the figure, ABCDEFGH is a rectangular block. Let P be a point lying on EH such that $EP=(6-2\sqrt{3})$ cm and $PH=(6+2\sqrt{3})$ cm. If $\angle APB=60^\circ$ and $\angle BAP=75^\circ$, find $\tan\angle EAP$.

A.
$$\frac{1}{\sqrt{6}}$$

B.
$$2 - \sqrt{3}$$

C.
$$\frac{1}{2}$$

D.
$$\sqrt{\frac{5}{6}}$$

42. In a seminar, there are 7 teachers from school A and 3 teachers from school B. If they are randomly arranged to sit in a row, find the number of ways that no teachers from school B sit next to each other.

A. 604 800

B. 1 058 400

C. 1 693 440

D. 3 386 880

- 43. Ben and Jason are asked to answer a question. The probabilities that Ben and Jason answer the question correctly are $\frac{1}{3}$ and $\frac{2}{5}$ respectively. Given that at least one of them answers the question wrongly, find the probability that Ben answers the question correctly.
 - A. $\frac{3}{13}$
 - B. $\frac{5}{13}$
 - C. $\frac{5}{11}$
 - D. $\frac{5}{9}$

- 44. In a test, the scores of Donald and Elsa are 13 and 31 respectively, and their standard scores are 0.1 and 1.3 respectively. Find the standard deviation of the scores in the test.
 - A. 11.5
 - B. 12
 - C. 15
 - D. 18

- 45. There are 10 terms in a geometric sequence, with common ratio $\sqrt{2}$. If the variance of the first 4 terms of the sequence is 3, then the variance of the last 4 terms of the sequence is
 - A. 6.
 - B. 12.
 - C. 24.
 - D. 192.