2020-DSE MATH CP PAPER 2

P.O.C.A. WONG SIU CHING SECONDARY SCHOOL HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2020

MATHEMATICS Compulsory Part PAPER 2

11:15 am - 12.30 pm (1¼ hours)

INSTRUCTIONS

- 1. Read carefully the instruction on the Answer Sheet. After the announcement of the start of the examination, you should first insert the information required in the space provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS.** You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answer clearly; otherwise you will lose marks if the answers cannot be captured
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagram in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$m^2 - 4n^2 - 6m + 9 =$$

- A. (m-2n-3)(m+2n-3).
- B. (m-2n-3)(m+2n+3).
- C. (m-2n+3)(m+2n-3).

D.
$$(m+2n-3)^2$$
.

2.
$$\left(\frac{1}{3}\right)^{2020} (-3)^{2019} =$$

A. -3 .
B. $-\frac{1}{3}$.
C. $-\frac{1}{3^{4039}}$.
D. $\frac{1}{3}$.

3. If
$$\frac{b-c}{b+c} = a$$
, then $c =$
A. $\frac{b(1+a)}{2}$.
B. $\frac{b(1-a)}{1+a}$.
C. $\frac{b(1+a)}{1-a}$.
D. $\frac{2b}{1+a}$.

4. 0.095274986 =

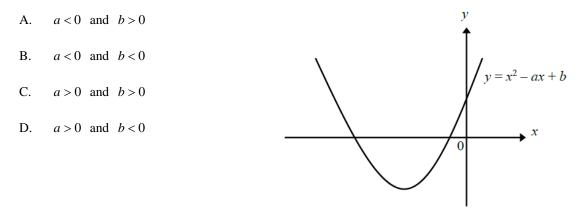
- A. 0.09 (correct to 2 significant figures).
- B. 0.095 (correct to 2 decimal places).
- C. 0.095274 (correct to 6 decimal places).
- D. 0.09527 (correct to 4 significant figures).
- 5. The solution of $18x 3 < 12x + 12 \le 20x + 8$ is

A.
$$x \ge -\frac{11}{2}$$
.
B. $x < \frac{5}{2}$.
C. $-\frac{11}{2} \le x < \frac{5}{2}$.
D. $\frac{1}{2} \le x < \frac{5}{2}$.

6. Let *m* be a constant. If $f(x) = 3x^2 + x - m$, then f(m) - f(-m) =

- A. 2*m*.
- B. -2m.
- C. 0.
- D. $6m^2 + 2m$.
- 7. When f(x) is divided by $x^2 x 6$, the remainder is -3x + 4. Find the remainder when f(x) is divided by x+2.
 - A. -5
 - B. -2
 - C. 10
 - D. 13

Go on to the next page

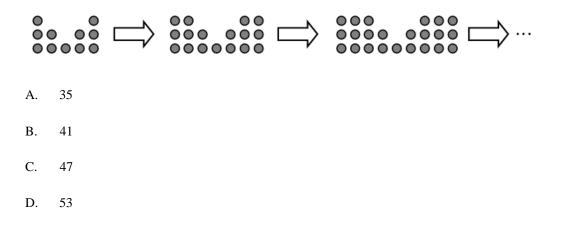

8. If p and q are constants such that $x^2 + p \equiv (x+3)(x+q) + 10$, then $p = x^2 + p = (x+3)(x+q) + 10$

A. 10.
B. 1.
C. -3.

-9.

D.

9. The figure shows the graph of $y = x^2 - ax + b$, where *a* and *b* are constants. Which of the following is true?



- 10. The base radius of a right circular cylinder is increased by 30% and the height is decreased by 30%. What is the percentage change in its volume?
 - A. Increased by 18.3%
 - B. Increased by 6%
 - C. Decreased by 9%
 - D. The volume remains unchanged
- 11. June cycles for 6 minutes from her home to a town at a constant speed of 24 km/h. If the distance between her home and the town is 8 cm on a map, find the scale of the map.
 - A. 1:60000
 - B. 1:30000
 - C. 1:15000
 - D. 1:300

12. It is given that p varies directly as square root of q and inversely as s^2 . Which of the following must be a constant.

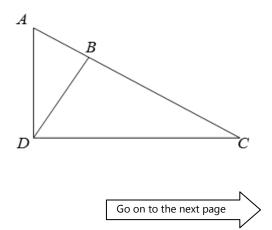
A.
$$\frac{p^2}{qs^4}$$

B.
$$\frac{s^4}{p^2q}$$

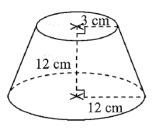
C.
$$\frac{1}{p^2qs^4}$$

D.
$$\frac{q}{p^2s^4}$$

13. In the figure, the 1st pattern consists of 11 dots. For any positive integer n, the (n+1) th pattern is formed by adding 6 dots to the n th pattern. Find the number of dots in the 8 th pattern.

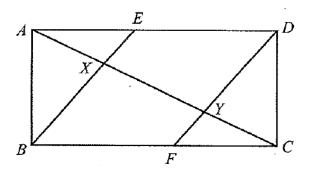


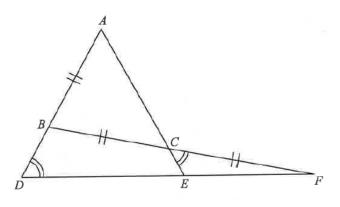
- 14. In the figure, ABC is a straight line. AB = 12 cm, AD = 37 cm, BD = 35 cm and CD = 125 cm. Find the perimeter of $\triangle BDC$.
 - A. 120 cm.


238 cm.

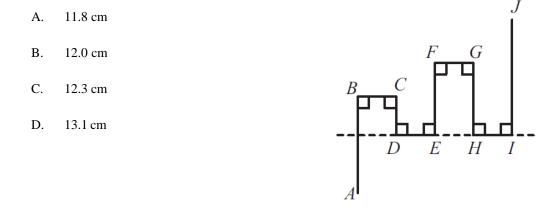
Β.

- C. 240 cm
- D. 280 cm.


- 15. The figure shows a frustum of a right circular cone. The radii of the upper base and the lower base are 3 cm and 12 cm respectively. The height of the frustum is 12 cm. Find the total surface area of the frustum.
 - A. $225\pi \text{ cm}^2$
 - B. $333\pi \text{ cm}^2$
 - C. $378\pi \text{ cm}^2$
 - D. $393\pi \text{ cm}^2$

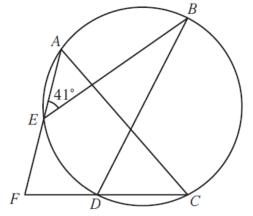

16. In the figure, *ABCD* is a rectangle. *E* and *F* are points on *AD* and *BC* respectively such that AE: DE = CF: BF = 2:3 and *AC* cuts *BE* and *DF* at the points *X* and *Y* respectively. If the area of ΔAEX is 16 cm², then the area of the quadrilateral *BFYX* is

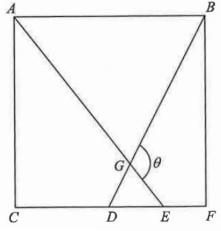
- B. 36 cm^2 .
- C. 84 cm^2 .
- D. 100 cm^2 .



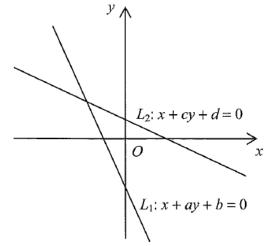
- 17. In the figure, $\triangle ABC$ is an isosceles triangle and AB = BC = CF. It is known that $\angle ADE = \angle ECF$, $\angle BFD = 15^{\circ}$, Which of the following must be true?
 - I. $\triangle ADE$ is an isosceles triangle
 - II. $\angle BDF = 55^{\circ}$
 - III. BD = 2CE
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 18. In the figure, AD//BC, AC is the angle bisector of $\angle BAD$. E is a point lying on AC such that BC = CE. If $\angle ABE = 30^\circ$, find $\angle AEB$.
 - A. 102° B. 110° C. 120° D. 126°


19. In the figure, BC = CD = DE = FG = HI = 2 cm, BA = 5 cm and JI = 6 cm. Find the distance between A and J correct to 3 significant figures.


- 20. *ABCD* is a parallelogram. The diagonal *BD* is an axis of symmetry of *ABCD* and *AC* = *BD*. *AC* and *BD* meet at *E*. If *M* is the mid-point of *AB* and *N* is the mid-point of *CD*, which of the following are true?
 - I. AB = BC = CD = AD
 - II. $AC \perp BD$
 - III. $\Delta BEM \cong \Delta CEN$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

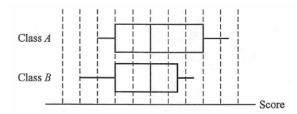
Go on to the next page


- 21. In the figure, *DB* is a diameter of the circle *ABCDE*. *F* is a point outside the circle such that *FEA* and *FDC* are straight lines. If FA = FC and $\angle AEB = 41^{\circ}$, then $\angle AFC =$
 - A. 74°.
 - B. 82°.
 - C. 90°.
 - D. 98°.

- 22. In the figure, *ABFC* is a square and CD: DE: EF = 2:1:1. Find the value of θ correct to 3 significant figures.
 - A. 105°
 - B. 110°
 - C. 117°
 - D. 121°

- 23. In the figure, the equations of the straight lines L_1 and L_2 are x + ay + b = 0 and x + cy + d = 0 respectively. Which of the following are true?
 - I. b > d
 - II. a < c
 - III. ab < cd
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 24. The straight lines $L_1: 7x y 6 = 0$ and $L_2: x 4y + 12 = 0$ intersect at *T*. Given that A(2, a) and B(c, d) lie on L_1 and L_2 respectively such that *AB* is perpendicular to L_2 . Find the length of *AB* correct to 2 decimal places.
 - A. 1.78
 B. 3.68
 C. 4.37
 D. 4.67
- 25. The polar coordinates and the rectangular coordinates of a point P are $(r, 150^\circ)$ and (x, 1) respectively. Find the value of x.
 - A. -2B. $-\sqrt{3}$ C. $\sqrt{3}$ D. 2
- 26. The equation of a circle C is $2x^2 + 2y^2 12x + 44y 317 = 0$. Which of the following are true?
 - I. The coordinates of centre of C is (3, -11).
 - II. The radius of C is shorter than 28.
 - III. The line segment joining the origin and the centre of C has a perpendicular bisector which has a positive x-intercept.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 27. The coordinates of point A are (0, 4). Let P be a moving point in the rectangular coordinate plane such that its distance from A is always the same as that from the x-axis. Denote the locus of P by Γ . The equation of the axis of symmetry of Γ is


9

- A. x = 0.
- B. y = 0.
- C. x = 2.
- D. y = 2.

Go on to the next page

- 28. In a game, a box contains n silver coins and 20 bronze coins. A coin is randomly drawn from the box. If a silver coin is drawn, \$70 will be gained; otherwise, \$42 will be gained. Find the value of n if the expected value of the game is \$62.
 - A. 16
 - B. 28
 - C. 50
 - D. 60

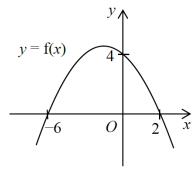
29. The box-and-whisker diagram below shows the distribution of the scores in a test for classes A and B respectively.

Which of the following statements must be true?

- I. The top 25% students in class A perform better than those in class B.
- II. The medians of the scores for both classes are the same.
- III. The range of the scores for class A is smaller than the range of the scores for class B.
 - A. II only
 - B. III only
 - C. I and II only
 - D. I and III only
- 30. The stem-and-leaf diagram below shows the distribution of the numbers of cakes sold in a bakery on some days.

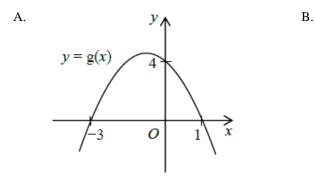
Stem (10)	Leaf(1)								
1	x	8	9	9 7 2	9				
2	x	x	7	7	8	8	9	9	
3	0	1	2	2	3	у	у		
4	0	2	3	у					

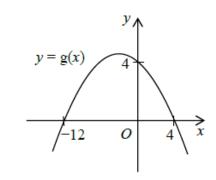
If the inter-quartile range of the distribution is greater than 14, which of the following is/are true?

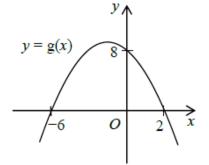

I. $3 \le x \le 7$

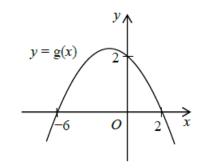
II.
$$6 \le y \le 9$$

- III. The range of the distribution is at most 39
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only


Section B


31.


The figure above shows the graph of y = f(x). If f(2x) = g(x), which of the following may represent the graph of y = g(x).


D.

C.

32. $5 \times 2^8 + 17 - 48 \times 2^3 =$

A. 110001001₂.

- B. 111001001₂.
- C. 1100010001₂.
- D. 1110010001₂.

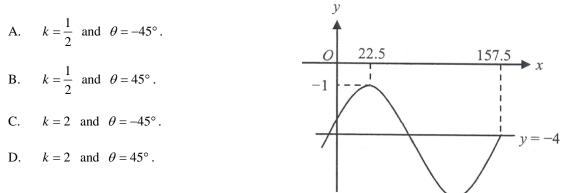
33. If $\alpha \neq \beta$ and $\alpha^2 + 4\alpha = \beta^2 + 4\beta = 3$, then $\left(\frac{2}{2^{\alpha}}\right)^{1-\beta} =$ A. $\frac{1}{64}$. B. 1. C. 4. D. 256.

34. Which of the following is the least?

- A. 2019⁻²⁹¹⁰
- B. 2190^{-2109}
- C. 2109^{-2190}
- D. 2910⁻²⁰¹⁹

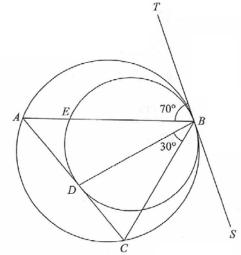

35. $\frac{2(1-2i)i^{10}}{1+i} =$ A. 1-3i.
B. 1+3i.
C. 3-i.
D. -3+i.

36. The sum to infinity of a geometric sequence is 24 and the sum to infinity of the squares of the terms of the same sequence is 192. Find the second term of the sequence.


A. $\frac{1}{2}$ B. 4 C. 6

D. 12

37. In the figure, *P* and *S* are points lying on the straight line L_1 , while *Q* and *R* are points lying on the straight line L_2 . *PQ* and *SR* are parallel to the y-axis. If (x, y) is a point lying in the shaded region *PQRS* (including the boundary), at which point does 3x - y - 5 attain its greatest value?


38. Let k be a positive constant and $-90^{\circ} < \theta < 90^{\circ}$. If the figure shows the graph of $y = -4 + 3\sin(kx^{\circ} + \theta)$, then

39. In the figure, *VABCD* is a right pyramid with a square base of side 6 cm. The slant edge of the pyramid is 10 cm. *P*, Q and *R* are the mid-points of *VC*, *AB* and *AD* respectively. Find the value of $\cos \angle QPR$.

~		
A.	$\frac{11}{200}$	
B.	$\frac{34}{43}$	
C.	$\frac{\sqrt{6622}}{86}$	
D.	$\frac{6\sqrt{77}}{77}$	A
		R D 6 cm

- 40. In the figure, *SBT* is the common tangent to the two circles *ABC* and *BDE* at *B*. *ADC* is the tangent to the circle *BDE* at *D* and *AB* intersects the circle *BDE* at *E*. If $\angle ABT = 70^{\circ}$ and $\angle CBD = 30^{\circ}$, find $\angle ABD$.
 - A. 10°
 - B. 20°
 - C. 30°
 - D. 40°

- 41. Let *a* be a constant. The straight line $L_1: x 3y a = 0$ and $L_2: 4x + 3y + a = 0$ cuts the *x*-axis at *P* and *Q* respectively. It is given that L_1 and L_2 intersect at *R*. If the coordinates of the orthocentre of ΔPQR is (0, 18), then a =
 - A. -24. B. $-\frac{27}{2}$. C. $\frac{27}{2}$. D. 24.
- 42. There are 9 male members and 6 female members in a club. 4 members are randomly selected from them to form a committee. Find the number of combinations that the committee consists of members of both sex.
 - A. 141
 - B. 1224
 - C. 1239
 - D. 1363

43. A bag contains 4 gold coins and 3 silver coins. Paul repeats drawing a coin at a time randomly from the bag without replacement until a gold coin is drawn. Find the probability that he needs at least three draws.

A.	$\frac{24}{343}$
B.	$\frac{1}{35}$
C.	$\frac{4}{35}$
D.	$\frac{1}{7}$

- 44. In test 1, Tom gets 80 marks and his standard score is 2. The mean and the standard deviation of test 2 remains unchanged and decreased by 20% respectively. If Tom gets 80 marks again in his test 2, then his standard score in test 2 is
 - A. 1.6.
 - B. 2.
 - C. 2.4.
 - D. 2.5
- 45. Let m_1 , r_1 and v_1 be the mean, the range and the variance of a group of numbers $\{x_1, x_2, x_3, \dots, x_{50}\}$ respectively. If m_2 , r_2 and v_2 be the mean, the range and the variance of a group of numbers $\{2-x_1, 2-x_2, 2-x_3, \dots, 2-x_{50}, 2-m_1\}$ respectively. Which of the following must be true?
 - I. $m_2 = 2 m_1$
 - II. $r_2 = r_1$
 - III. $v_2 = v_1$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

END OF PAPER