

YingWa Girls' School Mock Examination 2018-2019

> MATHEMATICS Compulsory Part PAPER 1

Marking Scheme

SECTION A(1) (35 marks)

1.

$$\frac{(2xy^4)^3}{8x^{-2}y^3} = \frac{8x^3y^{12}}{8x^{-2}y^3} = \frac{1M}{1M}$$

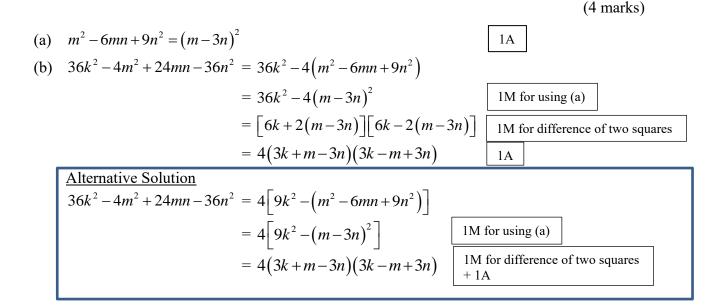
$$= x^5y^9 = \frac{1M \text{ for } x^{3\cdot(-2)} \text{ or } y^{12\cdot3} \text{ (can be absorbed)}}{1A}$$
(3 marks)

(3 marks)

2.

 $\frac{Ax}{B} = x + 2C$ Ax = Bx + 2BC Ax - Bx = 2BC $x = \frac{2BC}{A - B}$ IM for removing denominator (can be absorbed) IM for putting x on one side IA or equivalent

3.



(a)	$2x \le x - \frac{3+x}{2}$	
	$4x \le 2x - 3 - x$ $3x \le -3$ $x \le -1$	1M for putting x on one side 1A
	$5x \ge -20$ $x \ge -4$ Therefore, we have $x \le -1$ or $x \ge -4$	
	Thus, the solutions of (*) are all real numbers.	1A
(b)	1	1A

5.

(4 marks)

(4 marks)

Let x and y be the number of apples and the number of oranges respectively.

$\begin{cases} x + y = 148(1) \\ y = (1 - 15\%)x(2) \end{cases}$ So, we have $x + 0.85x = 148$ Solving, we have $x = 80$ and $y=68$ \therefore The difference of the number of apples and	1A+1A 1M for an equation in only 1 unknown number of oranges is 12.	
Alternative Solution Let y be the number of oranges. y = (1 - 15%)(148 - y) y = 125.8 - 0.85y y = 68 Note that $68 \div (1 - 15\%) - 68 = 12$. \therefore The difference of the number of apples and	1A for $y=(1-15\%)x + 1A$ for $x = 148-y$ 1M for a linear equationnumber of oranges is 12.	
Alternative SolutionDifference $= 148 \div 1.85 \times 0.15$ $= 12.$ 1A for $1.85 + 1A$ for $0.15 + 1M$ 1A		

6.

(a)	$120 \times (1 - 25\%)$ = \$90 ∴ The selling price of the book is \$90.	1M 1A
(b)	The cost of the book = $120 \div (1 + 50\%)$ = \$80 < \$90 \therefore There is a gain after selling the book.	1M 1 f.t.

2019 DSE-MATH-CP 1-Marking Scheme 2

7. (3 marks)
(a)
$$B = (5, 150^{\circ})$$

(b) Req. distance = $5\cos 60^{\circ}$
 $= \frac{5}{2}$
(3 marks)
(3 marks)
(1 M
1M
1A
8. (5 marks)
(5 marks)
(6 marks)
(6 marks)
(5 marks)
(1 A for any, 2A for all
(2 marks for correct proof with reasons
1 mark for correct proof with some reaso

$$Median = \frac{9}{5}(21.5) + 32 = \underline{70.7^{\circ}F} \qquad \underline{1A} \text{ for finding } 21.5^{\circ}C \text{ from graph } + \underline{1A}$$

Interquartile range = $\frac{9}{5}(22.5 - 20) = \underline{4.5^{\circ}F} \qquad \underline{1M} \text{ for New IQR} = \frac{9}{5} \times \text{Original IQR} + \underline{1A}$

SECTION A(2) (35 marks)

10.		(6)	o marks)
		Since the mean of the 17 student marks is 74, $1M$ k = 74 1A	
	(b)	(i)	
		The standard deviation of the 18 student marks is 9.32737905.	
		The corresponding interval is $(74 - 2 \times 9.32737905, 74 + 2 \times 9.32737905)$ 1M	
		≈ (55.34524189, 92.65475811)	
		Thus, 55 is an <i>outlier</i> .	
		(ii) There is no shange in the modion, which is 74 in both appear	1A
		There is no change in the median, which is 74 in both cases. The standard deviation decreases as the extreme datum (the outlier) is removed.	1A 1A

2019 DSE-MATH-CP 1-Marking Scheme 4

(a)

11.

Let $V \text{ cm}^3$ be the volume of water in the vessel.

$$\frac{V - 245}{V} = \left(\frac{20}{25}\right)^3$$

V = 502.0491803

The final volume of water in the vessel is 502 cm³ (cor. to 3 sig. fig.)

(b)

Let r cm be the radius of water surface. $\frac{1}{3}$

$$\times \pi \times r^2 \times 25 = 502.05$$
$$r = 4.379139881$$

The final area of wet curved surface

$$= \pi \times r \times \sqrt{r^2 + 25^2}$$

$$\approx 349.1734811 \text{ cm}^2$$

 $< 350 \text{ cm}^2$

The claim is correct.

12.	(6 marks)
(a) Let $C = k_1 + k_2 n$, where k_1 and k_2 are non-zero constants. $20750 = k_1 + 35k_2$ (1) $23000 = k_1 + 40k_2$ (2) Solving, $k_2 = 450$ $k_1 = 5000$ C = 5000 + 450n When $n = 50$,	$\begin{array}{c} 1 \text{A} \\ 1 \text{M} \end{array}$ 1 A for both k_1 and k_2
C = 5000 + 450(50) = 27500 The cost of the camp is \$27500.	1A
(b) 34025 = 5000 + 450n n = 64.5 It is not possible since 64.5 is not an integer.	1M 1A f.t.

1A

1M + 1A

1M	

1A f.t.

1M

1A

1M

1A

(a) The distance of car X from town P at 2:30 pm

=	$=\frac{100(120-30)}{120}$
=	= 75 km
(b)	Suppose that car <i>X</i> and car <i>Y</i> meet at the time <i>t</i> minutes after 2:30 pm.

f(2) = -50

2k + 52 + 4h = -50

f(4) = 0

4k + 444 + 16h = 0(2)

$$\frac{t+30}{120} = \frac{30}{100}$$
$$t = 6$$

 \therefore Car X and car Y meet at 2:36 pm.

(c)

During the period 2:30 pm to 4:00 pm, car Y travels 30 km while car X travels more than 30 km.

The average speed of car *Y* is lower than that of car *X*. · · . 1M The claim is disagreed. · · . 1A f.t.

.....(1)

(6 mar

1M

1A	
1A	

1A	
1M	

1A f.t.

(b)

$$\mathbf{f}(x)=\mathbf{0}$$

 $7(2)^{3} + h(2)^{2} + k(2) - 4 = -50$

 $7(4)^3 + h(4)^2 + k(4) - 4 = 0$

h = -30

$$(x-4)(7x^2 - 2x + 1) = 0$$

$$\Delta = (-2)^2 - 4(7)$$

$$= -24$$

< 0

k = 9

Solving,

The equation f(x) = 0 has one real root and two unreal roots.

... The claim is disagreed.

2019 DSE-MATH-CP 1-Marking Scheme 5

·ks)		

 $\theta = 120^{\circ}$

The equation of L_1 is

The equation of L_2 is

 $\tan \theta = -\sqrt{3}$

 L_1 and L_2 pass through the origin.

The required locus is a pair of angle bisectors, L_1 and L_2 .

 $y = x \tan 60^{\circ}$

 $\sqrt{3}x - y = 0$

(accept $y = \sqrt{3}x$)

(5 marks)

1M

1A

1M 1A

SECTION B (35 marks) 16.

(a) No. of teams can be formed $= C_3^8 + C_2^8 C_1^4 + C_1^8 C_2^4$ = 216

> Alternative: $C_3^{12} - C_3^4$ = 216

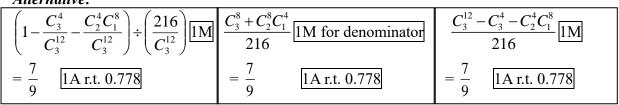
(b) Required Probability

$$= \frac{\frac{C_3^8 + C_2^8 C_1^4}{C_3^{12}}}{\frac{216}{C_3^{12}}}$$
 IM for denominator

$$\frac{7}{9}$$
 1A r.t. 0.778

Alternative:

=



2019 DSE-MATH-CP 1-Marking Scheme 6

$$y = x \tan 150^{\circ}$$

$$y = -\frac{x}{\sqrt{3}}$$

$$x + \sqrt{3}y = 0$$

(accept $y = -\frac{\sqrt{3}}{3}x$ or $y = -\frac{1}{\sqrt{3}}x$)
1A

1M for 3 cases

1A

1M

(2+2 = 4 marks)

(a) Let a be the first term and r be the common ratio

$a \times ar = 12$ (1) $ar^{2} \times ar^{3} = 972$ (2)	1M for either one
(2)÷ (1): $r^4 = 81$ r = 3 or $r = -3$ (rej)	
By (1), when $r = 3$, $a = 2$ or $a = -2$	1A
(b) $2 \times 3^{n-1} + 2 \times 3^{n+1} < 3 \times 10^{16}$	1A
$3^{n-1}(2+18) < 3 \times 10^{16}$	
$3^{n-1} < \frac{3}{2} \times 10^{15}$ (n-1) log 3 < log 1.5 + 15 \therefore n < 32.80761936	1A
The greatest value of n is 32.	1A

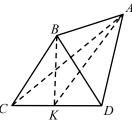
18.

(3+2+2=7 marks)1A (a)(i) m+n=5-rmn+r(m+n)=3mn+r(5-r)=3 $mn = r^2 - 5r + 3$ 1A The required equation: $x^2 - (5-r)x + r^2 - 5r + 3 = 0$. (ii) 1A (b) $x^2 - (5-r)x + r^2 - 5r + 3 = 0$ has real roots *m* and *n*. $\therefore \Delta \ge 0$ $\left[-(5-r)\right]^2 - 4(1)(r^2 - 5r + 3) \ge 0$ 1M $r^2 - 10r + 25 - 4r^2 + 20r - 12 \ge 0$ $3r^2 - 10r - 13 \le 0$ $-1 \le r \le \frac{13}{3}$ 1A (c) By symmetry of m, n and r and (b), m = -1By (a), *n* and *r* satisfy $x^2 - [5 - (-1)]x + (-1)^2 - 5(-1) + 3 = 0$ 1M for using (a) or (b) (withhold if state sub r = -1) i.e. $x^2 - 6x + 9 = 0$ $\therefore n = r = 3$ 1 f.t. \therefore The claim is agreed.

2019 DSE-MATH-CP 1-Marking Scheme 7

(a)(i) In
$$\triangle ACD$$
,
 $AD^2 = AC^2 + CD^2 - 2 \times AC \times CD \times \cos \angle ACD$
 $AD = \sqrt{15^2 + 12^2 - 2 \times 15 \times 12 \times \cos 70^\circ}$ cm
 ≈ 15.68032998 cm
 $= 15.7$ cm, cor. to 3 sig. fig.
 $BC = AD = 15.7$ cm
(ii) $AE = AB = CD = 12$ cm
In $\triangle AED$,
 $\cos \angle AED = \frac{AE^2 + ED^2 - AD^2}{2 \times AE \times ED}$
 $\approx \frac{12^2 + 10^2 - 15.7^2}{2 \times 12 \times 10}$
 $\angle AED \approx 90.44709029^\circ$
 $= 90.4^\circ$, cor. to 3 sig. fig.

(b)(i) Join BK.



The required angle is $\angle BAK$.

In $\triangle ACK$, $35^{\circ} + 70^{\circ} + \angle AKC = 180^{\circ}$ $\angle AKC = 75^{\circ}$

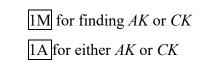
1A

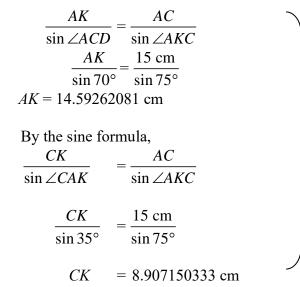
1A

1M

1A 1A

1A





19.

In $\triangle BCD$,

$$\cos \angle BCD = \frac{BC^2 + CD^2 - BD^2}{2 \times BC \times CD}$$

= $\frac{15.7^2 + 12^2 - 10^2}{2 \times 15.7 \times 12}$
 $\angle BCD = 39.6^\circ, \text{ cor. to 3 sig. fig.}$
In $\triangle BCK$,
 $BK^2 = CK^2 + BC^2 - 2 \times CK \times BC \times \cos \angle BCD$
 $BK = \sqrt{8.91^2 + 15.7^2 - 2 \times 8.91 \times 15.7 \times \cos 39.6^\circ}$ cm
= 10.49039544 cm
In $\triangle ABK$,
 $\cos \angle BAK = \frac{AB^2 + AK^2 - BK^2}{2 \times AB \times AK}$
 $12^2 + 14 + 6^2 - 10.5^2$

$$= \frac{12^2 + 14.6^2 - 10.5^2}{2 \times 12 \times 14.6}$$

\angle BAK = 45.2°, cor. to 3 sig. fig.

(a)
$$\begin{cases} x^{2} + y^{2} = 4 \\ y = mx + c \end{cases}$$

$$x^{2} + (mx + c)^{2} = 4$$

$$(m^{2} + 1)x^{2} + 2mcx + c^{2} - 4 = 0$$
(A) As *L* is tangent to *C*, we have $\Delta = 0$

$$(2mc)^{2} - 4(m^{2} + 1)(c^{2} - 4) = 0$$
(*m*²c² - m²c² + 4m² - c² + 4 = 0
 $\therefore c^{2} = 4m^{2} + 4$
i.e. $c^{2} = 4(m^{2} + 1)$
(*I* f.t.)
Alternative Solution (Out of Syllabus)
Centre of *C* = (0, 0) and radius = 2
As *L* is a tangent to *C*, $\left|\frac{m(0) - 0 + c}{\sqrt{m^{2} + 1}}\right| = 2$
(*I* M + 1A)
i.e. $|c| = 2\sqrt{m^{2} + 1}$
(*i*. $|c| = 2\sqrt{m^{2} + 2}$
(*i*. $|c| = 2\sqrt{m^{2} + 1}$
(*i*. $|$

(c) Consider a circle *D* with equation $(x-h)^2 + (y-k)^2 = r^2$ on a rectangular coordinate plane, where *h*, *k* and *r* are constants and $r \ge 0$. If *Q* is a moving point on the same coordinate plane, and the two tangents from *Q* to *D* are perpendicular to each other, write down the equation of locus of *Q* in terms of *h*, *k* and *r*.

Answer

(c) Equation of locus of Q is $(x-h)^2 + (y-k)^2 = 2r^2$.

1A for centre (h, k)1A for R.H.S. $2r^2$ Accept equivalent