Mock Exam MATH CP PAPER 1

> Ying Wa Girls' School Mock Examination 2021-2022

MATHEMATICS Compulsory Part PAPER 1

Question-Answer Book

Time allowed: 2 hours 15 minutes This paper must be answered in English.

INSTRUCTIONS

- After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1.
- This paper consists of THREE sections: A(1), A(2) and
 B. Each section carries 35 marks.
- Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question- Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, and fasten them with string INSIDE this book.
- 5. Unless otherwise specified, all working must be clearly shown.
- Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 7. The diagrams in this paper are not necessarily drawn to scale.

Ying Wa Girls' School All Rights Reserved 2021-2022 Date: 16 February 2022 Period: 1

Name: _____

Class Number: _____

Class: S6 _____

Candidate Number

	Marker's Use Only	Examiner's Use Only
Question No.	Marks	Marks
1 – 2		
3 – 4		
5 – 6		
7 – 8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
Total		

2022-DSE-MATH-CP 1-1

SECTION A(1) (35 marks)

 1. Simplify
$$\frac{(a^2b^2)^4}{a^{-4}b^{12}}$$
 and express your answer with positive indices.

 (3 marks)

 2. If $h + \frac{3}{x-4} = 2h-3$, express x in terms of h.

 (3 marks)

 (3 marks)

3.	Fact	orize	
	(a)	$9m^2 - 16$,	
	(b)	$3m^2n - 11mn - 20n$,	
	(c)	$9m^2 - 16 - 3m^2n + 11mn + 20n .$	
			(4 marks)
		4x - 3	
4.	(a)	Find the range of values of x which satisfy both $\frac{1}{5} \ge 2x - 3$ and $3 - 2$	2x < 1.
	(b)	How many integers satisfy both inequalities in (a)?	
			(4 marks)

5.	A table is sold at a discount of 20% on its marked price. The selling price of the table is
	\$2780.

(a) Find the marked price of the table.

(b) After selling the table, the percentage profit is 25%. Find the cost of the table.

(4 marks)

6. In a playgroup, the ratio of the number of baby boys to the number of baby girls is 11:7. If 8 baby boys and 6 baby girls join the playgroup, then the ratio of the number of baby boys to the number of baby girls is 3:2. Find the original number of baby boys in the playgroup.

(4 marks)

Answers written in the margin will not be marked.

1.	BC = (5k + 4) cm, v	where k is a constant. Find k.	(3 marks)
			(5 marks)
8.	L is a straight line v that the x-intercept	which is perpendicular to a straight line L_1 : $3x + 4y + 8 = 0$. of L is -3.	It is given
	(a) Find the equation L_1 and L inter	respectively. Final L and L cut the y-axis at A and B respectively. Final A and A and A respectively.	nd the ratio
	of the area of	ΔOPA to that of ΔOPB .	(5 marks)

9.	In Figure 1, the pie chart shows the distribution of the number of pairs of shoes owned by the students in a group.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	If a student is randomly selected from the group, the probability that the selected student $\frac{1}{1}$
	has more than 5 pairs of shoes is $\frac{1}{8}$.
	 (a) Find the values of α and β. (b) Find the mean of the distribution.
	(5 marks)
<u> </u>	
<u> </u>	

Answers written in the margin will not be marked.

SECTION A(2) (35 marks)

0.	The stem-and-leaf diagram below shows the distribution of the weights (in kg) of the
	players in a volleyball team.
	Stem (tens) Leaf (units)
	4 0 1 3 6 8
	5 2 2 2 7 9
	6 0 2 4 9 9
	$7 \begin{vmatrix} 1 & 1 & 3 & k \end{vmatrix}$
	 It is given that the range of the above distribution is twice of its inter-quartile range. (a) Find <i>k</i>. (4 marks) (b) If a player is randomly selected from the team, find the probability that the weight of the selected player is greater than the mode of the distribution. (1 mark)

Answers written in the margin will not be marked.

٦

11. Figure 2 shows the graphs for car A and car B travelling on the same straight road between town P and town Q during the period 7:30 to 10:00 in a morning. Car B travels at a constant speed during the period. It is given that town P and town Q are 240 km apart.

- Find the distance of car B from town Q at 8:00 in the morning. (a) (2 marks) (2 marks)
- At what time do car A and car B meet? (b)

(c) The driver of car A claims that, after 2 cars meet each other, the average speed of car A is less than that of car B until 10:00. Do you agree? Explain your answer. (2 marks)

Answers written in the margin will not be marked.

Go on to the next page

12. In Figure 3, the solid consists of a right circular cone and a hemisphere with a common base. The base radius and the height of the circular cone are r cm and 16 cm respectively. It is given that the ratio of the curved surface area of the circular cone to that of the hemisphere is 5 : 6.

(a) Find the value of *r*.

Express the volume of the solid in terms of π .

(b)

Answers written in the margin will not be marked.

Answers written in the margin will not be marked.

2022-DSE-MATH-CP 1-10

- 13. The cost of a wardrobe of weight w kg is \$C. C is partly constant and partly varies as \sqrt{w} . When w = 16, C = 1520 and when w = 25, C = 1650.
 - (a) Find the cost of a wardrobe of weight 36 kg. (4 marks)
 - (b) Someone claims that the cost of a wardrobe of weight 121 kg is higher than the total cost of two wardrobes of weight 36 kg. Is the claim correct? Explain your answer.

(2 marks)

ц.
rke
ma
be
not
 iii
n N
argi
E E
the
 itter
WL
ers
ISW

Answers written in the margin will not be marked.

- 14. The cubic polynomial f (x) is divisible by x 2. When f (x) is divided by $x^2 4$, the remainder is kx 8, where k is a constant.
 - (a) Find k. (3 marks)
 - (b) It is given that when f (x) is divided by x, the remainder is 16. When f (x) is divided by x + 3, the remainder is -65. Someone claims that all the roots of the equation f (x) = 0 are integers. Is the claim correct? Explain your answer.

(5 marks)

_
ų.
- ke
ma
- je
ot b
lne
Wil
Ë.
arg.
Шį
the
in 1
- u
Litt.
- M
ers
SW
 An
-
-
-
•
-
-
_
1
·
1
-
1

Answers written in the margin will not be marked.

15.	The coordinates of the points A and B are $(0, 5)$ and $(3, 1)$ respectively. Let P be a moving
	point in the rectangular coordinate plane such that $AP \perp PB$. The locus of P lies on a
	circle Γ .

(a) Find the equation of Γ .

(2 marks)

- (b) Q is a moving point on Γ . C(0,1) is a point in the same plane.
 - (i) Does Γ pass through C? Explain your answer.
 - (ii) When the slope of CQ is $\sqrt{3}$, someone claims that $\angle CAQ$ is greater than 100°. Do you agree? Explain your answer. (4 marks)

	ų.
	marke
	ot be 1
	will n
	nargin
	n the n
	itten i
	ers wi
	Answ
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
Answers written in the margin will not be marked	

_	
-	
_	
-	
_	
-	
_	
-	
_	
-	1
_	
-	ļ
_	
	•
-	-
_	
-	
-	
-	
-	
-	
-	
-	
_	
	1
-	1
_	1
	1
-	
1	L

SECTION B (35 marks)

16. A queue is randomly formed by 6 boys and 3 girls.

- (a) How many different queues can be formed? (1 mark)
- (b) Find the probability that all the boys are next to each other in the queue.

(3 marks)

	_
	-
	_
	ed.
	nark
	be 1
	not
	will
	- gin
	mai
	the
	- us
	/ritte
	TS W
	ISWe
	Ar
	-
	_
	-
	-
	-
	-
	-
	-
	-
	<u> </u>
Answers written in the margin will not be marked.	

Go on to the next page

17.	In an examination, the mean of the scores of a class of students is 70. The range of the
	scores of these students is at most 70. Johnny scored the lowest in the examination. His
	score is 25 and his standard score is -3 . Can the standard score of any student exceed 2?
	Explain your answer.
	(4 marks)
<u> </u>	

18.	Let	G(n)	be the nth term of a geometric sequence. It is given	that	G(3) = 25	6 and
	G(6	$) = \frac{1}{1}$				
	(-)	16			(2	
	(a)	Find	G(1).		(2 1)	narks)
	(D)	Supp	bose $G(n) = 2^{-n}$, for all positive integers <i>n</i> . Express $A(n)$ in terms of <i>n</i> .			
		(i) (ii)	Hence or otherwise find the greatest value $f(x)$	of	k such	that
		(11)	$G(1)G(2)G(3)\cdots G(k) > 2022$.	01	W Such	linut
					(5 n	narks)
						·
						·
1						

Answers written in the margin will not be marked.

_	
-	
_	
-	
_	
-	
_	
-	
_	
-	1
_	
-	ļ
_	
	•
-	-
_	
-	
-	
-	
-	
-	
-	
-	
_	
	1
-	1
_	1
	1
-	
1	L

Answers written in the margin will not be marked.

·
,
·
•

Answers written in the margin will not be marked.

				-			
20.	Let $f(x) = x^2 - (4k+2)x + 4k^2 + 7k - 4$, where k is a constant and $k \neq -1$. Let U be the						
	vert	ex of t	he graph of $y = f(x)$.				
	(a)	By t	he method of completing the square, find the coordinates of U in terms of k . (3 marks)				
	(b)	Let	g(x) be a function. It is known that the graph of $y = g(x)$ can be obtained by				
		trans	slating the graph of $y = f(x) 5$ units downwards and $(k+1)$ units leftwards.				
		Let	V be the vertex of the graph of $y = g(x)$.				
		(i)	Find $g(x)$ in terms of k.				
			Hence, or otherwise, write down the coordinates of V in terms of k .				
		(ii)	Let W be the point $(2k+6, 2k-6)$.				
			 (1) Find the equation of the circle passing through U, V and W in terms of k. (2) Someone claims that as k varies, the locus of the circumcentre of ΔUVW is a straight line. Do you agree? Explain your answer. 	ed.			
			(9 marks)	mark			
				ot be			
				will n			
				ngin			
				he mi			
				n in t			
				writte			
				wers '			
				Ans			
				_			
				-			
<u> </u>				·			

Answers written in the margin will not be marked.

 ,
,
,
·
,
·
——

Answers written in the margin will not be marked.

	Answers written in the margin will not b
END OF PAPER	
	END OF PAPER

2022-DSE-MATH-CP 1-24

Answers written in the margin will not be marked.

Go on to the next page	>

24